.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/Data/plot_skytem_dataset.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_Data_plot_skytem_dataset.py: Skytem dataset -------------- .. GENERATED FROM PYTHON SOURCE LINES 6-14 .. code-block:: Python from geobipy import plotting as cP from os.path import join import matplotlib.pyplot as plt import numpy as np from geobipy import StatArray from geobipy import TdemData import h5py .. GENERATED FROM PYTHON SOURCE LINES 15-17 Reading in the Data +++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 19-31 .. code-block:: Python dataFolder = "..//..//supplementary//data//" # The data file name dataFiles=dataFolder + 'skytem_saline_clay.csv' # dataFiles = dataFolder + 'Skytem.csv' # The EM system file name systemFiles=[dataFolder + 'SkytemHM.stm', dataFolder + 'SkytemLM.stm'] from pathlib import Path for f in systemFiles[:1]: txt = Path(f).read_text() print(txt) .. rst-class:: sphx-glr-script-out .. code-block:: none System Begin Name = SkyTemHighMoment-ElkHills Type = Time Domain Transmitter Begin NumberOfTurns = 1 PeakCurrent = 1 LoopArea = 1 BaseFrequency = 30.0 WaveformDigitisingFrequency = 491520 WaveFormCurrent Begin -4.00E-03 0.00E+00 -3.91E-03 3.17E-01 -3.81E-03 6.30E-01 -3.72E-03 8.79E-01 -3.68E-03 9.61E-01 -2.30E-03 9.74E-01 -1.01E-03 9.88E-01 0.00E+00 1.00E+00 3.25E-06 9.91E-01 1.00E-04 7.02E-01 2.02E-04 3.78E-01 2.82E-04 1.16E-01 3.08E-04 2.79E-02 3.13E-04 1.21E-02 3.15E-04 6.61E-03 3.17E-04 3.03E-03 3.19E-04 0.00E+00 0.012666667 0.00E+00 WaveFormCurrent End Transmitter End Receiver Begin NumberOfWindows = 26 WindowWeightingScheme = AreaUnderCurve WindowTimes Begin 3.796E-04 3.872E-04 3.876E-04 3.972E-04 3.976E-04 4.102E-04 4.106E-04 4.262E-04 4.266E-04 4.462E-04 4.466E-04 4.712E-04 4.716E-04 5.022E-04 5.026E-04 5.422E-04 5.426E-04 5.932E-04 5.936E-04 6.562E-04 6.566E-04 7.372E-04 7.376E-04 8.382E-04 8.386E-04 9.652E-04 9.656E-04 1.126E-03 1.127E-03 1.328E-03 1.329E-03 1.583E-03 1.584E-03 1.905E-03 1.906E-03 2.311E-03 2.312E-03 2.822E-03 2.823E-03 3.468E-03 3.469E-03 4.260E-03 4.261E-03 5.228E-03 5.229E-03 6.413E-03 6.414E-03 7.865E-03 7.866E-03 9.641E-03 9.642E-03 1.182E-02 WindowTimes End LowPassFilter Begin CutOffFrequency = 300000 210000 Order = 1 2 LowPassFilter End Receiver End ForwardModelling Begin //TX loop area is was 340.82 m^2 -> r = sqrt(340.82/pi) ModellingLoopRadius = 10.416 OutputType = dB/dt XOutputScaling = 0 YOutputScaling = 0 ZOutputScaling = 1 SecondaryFieldNormalisation = none FrequenciesPerDecade = 5 NumberOfAbsiccaInHankelTransformEvaluation = 21 ForwardModelling End System End .. GENERATED FROM PYTHON SOURCE LINES 32-33 Read in the data from file .. GENERATED FROM PYTHON SOURCE LINES 33-35 .. code-block:: Python TD = TdemData.read_csv(dataFiles, systemFiles) .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 36-37 Plot the locations of the data points .. GENERATED FROM PYTHON SOURCE LINES 37-40 .. code-block:: Python plt.figure(1, figsize=(8,6)) _ = TD.scatter2D() .. image-sg:: /examples/Data/images/sphx_glr_plot_skytem_dataset_001.png :alt: plot skytem dataset :srcset: /examples/Data/images/sphx_glr_plot_skytem_dataset_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 41-42 Plot all the data along the specified line .. GENERATED FROM PYTHON SOURCE LINES 42-45 .. code-block:: Python plt.figure(2, figsize=(8,6)) _ = TD.plotLine(0.0, log=10) .. image-sg:: /examples/Data/images/sphx_glr_plot_skytem_dataset_002.png :alt: plot skytem dataset :srcset: /examples/Data/images/sphx_glr_plot_skytem_dataset_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 46-47 Or, plot specific channels in the data .. GENERATED FROM PYTHON SOURCE LINES 47-50 .. code-block:: Python plt.figure(3, figsize=(8,6)) _ = TD.plot_data(system=0, channels=[1, 3, 5], log=10) .. image-sg:: /examples/Data/images/sphx_glr_plot_skytem_dataset_003.png :alt: plot skytem dataset :srcset: /examples/Data/images/sphx_glr_plot_skytem_dataset_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 51-57 .. code-block:: Python plt.figure(4) plt.subplot(211) _ = TD.pcolor(system=0, xscale='log', log=10) plt.subplot(212) _ = TD.pcolor(system=1, xscale='log', log=10) .. image-sg:: /examples/Data/images/sphx_glr_plot_skytem_dataset_004.png :alt: plot skytem dataset :srcset: /examples/Data/images/sphx_glr_plot_skytem_dataset_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 58-94 .. code-block:: Python plt.figure(5) ax = TD.scatter2D(c=TD.secondary_field[:, TD.channel_index(system=0, channel=6)], log=10) plt.axis('equal') # with h5py.File('tdem.h5', 'w') as f: # TD.createHdf(f, 'tdem') # TD.writeHdf(f, 'tdem') # with h5py.File('tdem.h5', 'r') as f: # TD3 = TdemData.fromHdf(f['tdem']) # with h5py.File('tdem.h5', 'r') as f: # tdp = TdemData.fromHdf(f['tdem'], index=0) # #%% # # Obtain a line from the data set # # +++++++++++++++++++++++++++++++ # line = TD.line(0.0) # #%% # plt.figure(6) # _ = line.scatter2D(c=line.secondary_field[:, line.channel_index(system=0, channel=6)], log=10) # #%% # plt.figure(7) # _ = line.plot(xAxis='index', log=10) # Prepare the dataset so that we can read a point at a time. Dataset = TdemData._initialize_sequential_reading(dataFiles, systemFiles) # Get a datapoint from the file. DataPoint = Dataset._read_record() plt.show() .. image-sg:: /examples/Data/images/sphx_glr_plot_skytem_dataset_005.png :alt: plot skytem dataset :srcset: /examples/Data/images/sphx_glr_plot_skytem_dataset_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 95-146 File Format for time domain data ++++++++++++++++++++++++++++++++ Here we describe the file format for time domain data. The data columns are read in according to the column names in the first line In this description, the column name or its alternatives are given followed by what the name represents Optional columns are also described. Required columns ________________ line Line number for the data point fid Unique identification number of the data point x or northing or n Northing co-ordinate of the data point, (m) y or easting or e Easting co-ordinate of the data point, (m) z or alt Altitude of the transmitter coil above ground level (m) elevation Elevation of the ground at the data point (m) txrx_dx Distance in x between transmitter and reciever (m) txrx_dy Distance in y between transmitter and reciever (m) txrx_dz Distance in z between transmitter and reciever (m) Tx_Pitch Pitch of the transmitter loop Tx_Roll Roll of the transmitter loop Tx_Yaw Yaw of the transmitter loop Rx_Pitch Pitch of the receiver loop Rx_Roll Roll of the receiver loop Rx_Yaw Yaw of the receiver loop Off_time[0] Off_time[1] ... Off_time[last] - with the number and square brackets The measurements for each time gate specified in the accompanying system file under Receiver Window Times The total number of off_time columns should equal the sum of the receiver windows in all system files. Optional columns ________________ Off_time_Error[0] Off_time_Error[1] ... Off_time_Error[last] Estimates of standard deviation for each off time measurement Example Header ______________ Line fid easting northing elevation height txrx_dx txrx_dy txrx_dz TxPitch TxRoll TxYaw RxPitch RxRoll RxYaw Off[0] Off[1] .. GENERATED FROM PYTHON SOURCE LINES 148-160 File Format for a time domain system ++++++++++++++++++++++++++++++++++++ Please see Page 13 of Ross Brodie's `instructions`_ .. _instructions: https://github.com/GeoscienceAustralia/ga-aem/blob/master/docs/GA%20AEM%20Programs%20User%20Manual.pdf We use GA-AEM for our airborne time domain forward modeller. Example system files are contained in `the supplementary folder`_ in this repository .. _the supplementary folder: https://github.com/usgs/geobipy/tree/master/documentation_source/source/examples/supplementary/Data .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 5.187 seconds) .. _sphx_glr_download_examples_Data_plot_skytem_dataset.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_skytem_dataset.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_skytem_dataset.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_skytem_dataset.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_