.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/Datapoints/plot_skytem_datapoint.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_Datapoints_plot_skytem_datapoint.py: Skytem Datapoint Class ---------------------- .. GENERATED FROM PYTHON SOURCE LINES 7-15 Credits: We would like to thank Ross Brodie at Geoscience Australia for his airborne time domain forward modeller https://github.com/GeoscienceAustralia/ga-aem For ground-based time domain data, we are using Dieter Werthmuller's python package Empymod https://empymod.github.io/ Thanks to Dieter for his help getting Empymod ready for incorporation into GeoBIPy .. GENERATED FROM PYTHON SOURCE LINES 17-46 .. code-block:: Python from os.path import join import numpy as np import h5py import matplotlib.pyplot as plt from geobipy import Waveform from geobipy import SquareLoop, CircularLoop from geobipy import butterworth from geobipy import TdemSystem from geobipy import TdemData from geobipy import TdemDataPoint from geobipy import RectilinearMesh1D from geobipy import Model from geobipy import StatArray from geobipy import Distribution dataFolder = "..//..//supplementary//data//" # Obtaining a datapoint from a dataset # ++++++++++++++++++++++++++++++++++++ # More often than not, our observed data is stored in a file on disk. # We can read in a dataset and pull datapoints from it. # # For more information about the time domain data set, see :ref:`Time domain dataset` # The data file name dataFile=dataFolder + 'skytem_saline_clay.csv' # The EM system file name systemFile=[dataFolder + 'SkytemHM.stm', dataFolder + 'SkytemLM.stm'] .. GENERATED FROM PYTHON SOURCE LINES 47-49 Initialize and read an EM data set Prepare the dataset so that we can read a point at a time. .. GENERATED FROM PYTHON SOURCE LINES 49-55 .. code-block:: Python Dataset = TdemData._initialize_sequential_reading(dataFile, systemFile) # Get a datapoint from the file. tdp = Dataset._read_record() Dataset._file.close() .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) .. GENERATED FROM PYTHON SOURCE LINES 56-58 Using a time domain datapoint +++++++++++++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 60-61 We can define a 1D layered earth model, and use it to predict some data .. GENERATED FROM PYTHON SOURCE LINES 61-64 .. code-block:: Python par = StatArray(np.r_[500.0, 20.0], "Conductivity", "$\frac{S}{m}$") mod = Model(RectilinearMesh1D(edges=np.r_[0, 75.0, np.inf]), values=par) .. GENERATED FROM PYTHON SOURCE LINES 65-66 Forward model the data .. GENERATED FROM PYTHON SOURCE LINES 66-68 .. code-block:: Python tdp.forward(mod) .. GENERATED FROM PYTHON SOURCE LINES 69-77 .. code-block:: Python plt.figure() plt.subplot(121) _ = mod.pcolor() plt.subplot(122) _ = tdp.plot() _ = tdp.plot_predicted() plt.tight_layout() .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_001.png :alt: Time Domain EM Data :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /Users/nfoks/codes/repositories/geobipy/geobipy/src/classes/data/datapoint/TdemDataPoint.py:363: RuntimeWarning: divide by zero encountered in log additive_error = exp(log(self.additive_error[i]) - 0.5 * (log(off_times) - log(1e-3))) .. GENERATED FROM PYTHON SOURCE LINES 78-82 .. code-block:: Python plt.figure() tdp.plotDataResidual(yscale='log', xscale='log') plt.title('new') .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_002.png :alt: new :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'new') .. GENERATED FROM PYTHON SOURCE LINES 83-84 Compute the sensitivity matrix for a given model .. GENERATED FROM PYTHON SOURCE LINES 84-88 .. code-block:: Python J = tdp.sensitivity(mod) plt.figure() _ = np.abs(J).pcolor(equalize=True, log=10, flipY=True) .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_003.png :alt: plot skytem datapoint :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 89-91 Attaching statistical descriptors to the skytem datapoint +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 91-105 .. code-block:: Python from numpy.random import Generator from numpy.random import PCG64DXSM generator = PCG64DXSM(seed=0) prng = Generator(generator) # Set values of relative and additive error for both systems. tdp.relative_error = np.r_[0.05, 0.05] tdp.additive_error = np.r_[1e-14, 1e-13] # Define a multivariate normal distribution as the prior on the predicted data. data_prior = Distribution('MvNormal', tdp.data[tdp.active], tdp.std[tdp.active]**2.0, prng=prng) tdp.set_priors(data_prior=data_prior) .. GENERATED FROM PYTHON SOURCE LINES 106-107 This allows us to evaluate the likelihood of the predicted data .. GENERATED FROM PYTHON SOURCE LINES 107-111 .. code-block:: Python print(tdp.likelihood(log=True)) # Or the misfit print(tdp.data_misfit()) .. rst-class:: sphx-glr-script-out .. code-block:: none -320327.7331520333 643134.8665683012 .. GENERATED FROM PYTHON SOURCE LINES 112-113 Plot the misfits for a range of half space conductivities .. GENERATED FROM PYTHON SOURCE LINES 113-117 .. code-block:: Python plt.figure() _ = tdp.plot_halfspace_responses(-6.0, 4.0, 200) plt.title("Halfspace responses") .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_004.png :alt: Halfspace responses :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Halfspace responses') .. GENERATED FROM PYTHON SOURCE LINES 118-119 We can perform a quick search for the best fitting half space .. GENERATED FROM PYTHON SOURCE LINES 119-126 .. code-block:: Python halfspace = tdp.find_best_halfspace() print('Best half space conductivity is {} $S/m$'.format(halfspace.values)) plt.figure() _ = tdp.plot() _ = tdp.plot_predicted() .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_005.png :alt: Time Domain EM Data :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Best half space conductivity is [0.01047616] $S/m$ .. GENERATED FROM PYTHON SOURCE LINES 127-128 Compute the misfit between observed and predicted data .. GENERATED FROM PYTHON SOURCE LINES 128-130 .. code-block:: Python print(tdp.data_misfit()) .. rst-class:: sphx-glr-script-out .. code-block:: none 19656.31514467752 .. GENERATED FROM PYTHON SOURCE LINES 131-133 We can attach priors to the height of the datapoint, the relative error multiplier, and the additive error noise floor .. GENERATED FROM PYTHON SOURCE LINES 133-140 .. code-block:: Python # Define the distributions used as priors. z_prior = Distribution('Uniform', min=np.float64(tdp.z) - 2.0, max=np.float64(tdp.z) + 2.0, prng=prng) relativePrior = Distribution('Uniform', min=np.r_[0.01, 0.01], max=np.r_[0.5, 0.5], prng=prng) additivePrior = Distribution('Uniform', min=np.r_[1e-16, 1e-16], max=np.r_[1e-10, 1e-10], log=True, prng=prng) tdp.set_priors(relative_error_prior=relativePrior, additive_error_prior=additivePrior, z_prior=z_prior, prng=prng) .. rst-class:: sphx-glr-script-out .. code-block:: none /Users/nfoks/codes/repositories/geobipy/documentation_source/source/examples/Datapoints/plot_skytem_datapoint.py:135: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.) z_prior = Distribution('Uniform', min=np.float64(tdp.z) - 2.0, max=np.float64(tdp.z) + 2.0, prng=prng) .. GENERATED FROM PYTHON SOURCE LINES 141-142 In order to perturb our solvable parameters, we need to attach proposal distributions .. GENERATED FROM PYTHON SOURCE LINES 142-147 .. code-block:: Python z_proposal = Distribution('Normal', mean=tdp.z, variance = 0.01, prng=prng) relativeProposal = Distribution('MvNormal', mean=tdp.relative_error, variance=2.5e-7, prng=prng) additiveProposal = Distribution('MvLogNormal', mean=tdp.additive_error, variance=2.5e-3, linearSpace=True, prng=prng) tdp.set_proposals(relativeProposal, additiveProposal, z_proposal=z_proposal, prng=prng) .. GENERATED FROM PYTHON SOURCE LINES 148-149 With priorss set we can auto generate the posteriors .. GENERATED FROM PYTHON SOURCE LINES 149-151 .. code-block:: Python tdp.set_posteriors() .. GENERATED FROM PYTHON SOURCE LINES 152-154 Perturb the datapoint and record the perturbations Note we are not using the priors to accept or reject perturbations. .. GENERATED FROM PYTHON SOURCE LINES 154-159 .. code-block:: Python for i in range(10): tdp.perturb() tdp.update_posteriors() .. GENERATED FROM PYTHON SOURCE LINES 160-161 Plot the posterior distributions .. GENERATED FROM PYTHON SOURCE LINES 161-166 .. code-block:: Python plt.figure() tdp.plot_posteriors(overlay=tdp) plt.show() .. image-sg:: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_006.png :alt: Time Domain EM Data :srcset: /examples/Datapoints/images/sphx_glr_plot_skytem_datapoint_006.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 167-244 File Format for a time domain datapoint +++++++++++++++++++++++++++++++++++++++ Here we describe the file format for a time domain datapoint. For individual datapoints we are using the AarhusInv data format. Here we take the description for the AarhusInv TEM data file, modified to reflect what we can currently handle in GeoBIPy. Line 1 :: string User-defined label describing the TEM datapoint. This line must contain the following, separated by semicolons. XUTM= YUTM= Elevation= StationNumber= LineNumber= Current= Line 2 :: first integer, sourceType 7 = Rectangular loop source parallel to the x - y plane Line 2 :: second integer, polarization 3 = Vertical magnetic field Line 3 :: 6 floats, transmitter and receiver offsets relative to X/Y UTM location. If sourceType = 7, Position of the center loop sounding. Line 4 :: Transmitter loop dimensions If sourceType = 7, 2 floats. Loop side length in the x and y directions Line 5 :: Fixed 3 3 3 Line 6 :: first integer, transmitter waveform type. Fixed 3 = User defined waveform. Line 6 :: second integer, number of transmitter waveforms. Fixed 1 Line 7 :: transmitter waveform definition A user-defined waveform with piecewise linear segments. A full transmitter waveform definition consists of a number of linear segments This line contains an integer as the first entry, which specifies the number of segments, followed by each segment with 4 floats each. The 4 floats per segment are the start and end times, and start and end amplitudes of the waveform. e.g. 3 -8.333e-03 -8.033e-03 0.0 1.0 -8.033e-03 0.0 1.0 1.0 0.0 5.4e-06 1.0 0.0 Line 8 :: On time information. Not used but needs specifying. 1 1 1 Line 9 :: On time low-pass filters. Not used but need specifying. 0 Line 10 :: On time high-pass filters. Not used but need specifying. 0 Line 11 :: Front-gate time. Not used but need specifying. 0.0 Line 12 :: first integer, Number of off time filters Number of filters Line 12 :: second integer, Order of the butterworth filter 1 or 2 Line 12 :: cutoff frequencies Hz, one per the number of filters e.g. 4.5e5 Line 13 :: Off time high pass filters. See Line 12 Lines after 13 contain 3 columns that pertain to Measurement Time, Data Value, Estimated Standard Deviation Example data files are contained in `the supplementary folder`_ in this repository .. _the supplementary folder: https://github.com/usgs/geobipy/tree/master/documentation_source/source/examples/supplementary/Data .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 2.445 seconds) .. _sphx_glr_download_examples_Datapoints_plot_skytem_datapoint.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_skytem_datapoint.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_skytem_datapoint.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_skytem_datapoint.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_