.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/Inference_2D/plot_inference_2d_resolve.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_Inference_2D_plot_inference_2d_resolve.py: 2D Posterior analysis of Resolve inference ------------------------------------------ All plotting in GeoBIPy can be carried out using the 3D inference class .. GENERATED FROM PYTHON SOURCE LINES 8-151 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_001.png :alt: resolve glacial, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_001.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_002.png :alt: resolve saline_clay, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_002.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_003.png :alt: resolve resistive_dolomites, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_003.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_004.png :alt: resolve resistive_basement, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_004.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_005.png :alt: resolve coastal_salt_water, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_005.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_006.png :alt: resolve ice_over_salt_water, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_resolve_006.png :class: sphx-glr-multi-img .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from geobipy import Model from geobipy import Inference2D def plot_2d_summary(folder, data_type, model_type): #%% # Inference for a line of inferences # ++++++++++++++++++++++++++++++++++ # # We can instantiate the inference handler by providing a path to the directory containing # HDF5 files generated by GeoBIPy. # # The InfereceXD classes are low memory. They only read information from the HDF5 files # as and when it is needed. # # The first time you use these classes to create plots, expect longer initial processing times. # I precompute expensive properties and store them in the HDF5 files for later use. from numpy.random import Generator from numpy.random import PCG64DXSM generator = PCG64DXSM(seed=0) prng = Generator(generator) #%% results_2d = Inference2D.fromHdf('{}/{}/{}/0.0.h5'.format(folder, data_type, model_type), prng=prng) kwargs = { "log" : 10, "cmap" : 'jet' } fig = plt.figure(figsize=(16, 8)) plt.suptitle("{} {}".format(data_type, model_type)) gs0 = fig.add_gridspec(6, 2, hspace=1.0) true_model = Model.create_synthetic_model(model_type) true_model.mesh.y_edges = true_model.mesh.y_edges / 10.0 kwargs['vmin'] = np.log10(np.min(true_model.values)) kwargs['vmax'] = np.log10(np.max(true_model.values)) ax = fig.add_subplot(gs0[0, 0]) true_model.pcolor(flipY=True, ax=ax, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax, xlabel=False, ylabel=False); results_2d.plot_elevation(linewidth=0.3, ax=ax, xlabel=False, ylabel=False); plt.ylim([-160, 60]) ax1 = fig.add_subplot(gs0[0, 1], sharex=ax, sharey=ax) results_2d.plot_mean_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); # By adding the useVariance keyword, we can make regions of lower confidence more transparent ax1 = fig.add_subplot(gs0[1, 1], sharex=ax, sharey=ax) results_2d.plot_mode_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); # # # # # We can also choose to keep parameters above the DOI opaque. # # # # results_2d.compute_doi() # # # # plt.subplot(313) # # # # results_2d.plot_mean_model(use_variance=True, mask_below_doi=True, **kwargs); # # # # results_2d.plot_data_elevation(linewidth=0.3); # # # # results_2d.plot_elevation(linewidth=0.3); ax1 = fig.add_subplot(gs0[2, 1], sharex=ax, sharey=ax) results_2d.plot_best_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1.set_title('Best model') del kwargs['vmin'] del kwargs['vmax'] ax1 = fig.add_subplot(gs0[3, 1], sharex=ax, sharey=ax); ax1.set_title('5%') results_2d.plot_percentile(ax=ax1, percent=0.05, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[4, 1], sharex=ax, sharey=ax); ax1.set_title('50%') results_2d.plot_percentile(ax=ax1, percent=0.5, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[5, 1], sharex=ax, sharey=ax); ax1.set_title('95%') results_2d.plot_percentile(ax=ax1, percent=0.95, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); #%% # We can plot the parameter values that produced the highest posterior ax1 = fig.add_subplot(gs0[2, 0], sharex=ax) results_2d.plot_k_layers(ax=ax1, wrap_ylabel=True) ax1 = fig.add_subplot(gs0[1, 0], sharex=ax) ll, bb, ww, hh = ax1.get_position().bounds ax1.set_position([ll, bb, ww*0.8, hh]) results_2d.plot_channel_saturation(ax=ax1, wrap_ylabel=True) results_2d.plot_burned_in(ax=ax1, underlay=True) #%% # Now we can start plotting some more interesting posterior properties. # How about the confidence? ax1 = fig.add_subplot(gs0[3, 0], sharex=ax, sharey=ax) results_2d.plot_confidence(ax=ax1); results_2d.plot_data_elevation(ax=ax1, linewidth=0.3); results_2d.plot_elevation(ax=ax1, linewidth=0.3); #%% # We can take the interface depth posterior for each data point, # and display an interface probability cross section # This posterior can be washed out, so the clim_scaling keyword lets me saturate # the top and bottom 0.5% of the colour range ax1 = fig.add_subplot(gs0[4, 0], sharex=ax, sharey=ax) ax1.set_title('P(Interface)') results_2d.plot_interfaces(cmap='Greys', clim_scaling=0.5, ax=ax1); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[5, 0], sharex=ax, sharey=ax) results_2d.plot_entropy(cmap='Greys', clim_scaling=0.5, ax=ax1); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); plt.show() # plt.savefig('{}_{}.png'.format(data_type, model_type), dpi=300) if __name__ == '__main__': models = ['glacial', 'saline_clay', 'resistive_dolomites', 'resistive_basement', 'coastal_salt_water', 'ice_over_salt_water'] for model in models: try: plot_2d_summary("../../../Parallel_Inference/", "resolve", model) except Exception as e: print(model) print(e) pass .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 22.172 seconds) .. _sphx_glr_download_examples_Inference_2D_plot_inference_2d_resolve.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inference_2d_resolve.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inference_2d_resolve.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_inference_2d_resolve.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_