.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/Inference_2D/plot_inference_2d_skytem.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_Inference_2D_plot_inference_2d_skytem.py: 2D Posterior analysis of Skytem inference ----------------------------------------- All plotting in GeoBIPy can be carried out using the 3D inference class .. GENERATED FROM PYTHON SOURCE LINES 8-152 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_001.png :alt: skytem glacial, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_001.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_002.png :alt: skytem saline_clay, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_002.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_003.png :alt: skytem resistive_dolomites, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_003.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_004.png :alt: skytem resistive_basement, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_004.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_005.png :alt: skytem coastal_salt_water, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_005.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_006.png :alt: skytem ice_over_salt_water, Best model, 5%, 50%, 95%, P(# of Layers), P(Interface) :srcset: /examples/Inference_2D/images/sphx_glr_plot_inference_2d_skytem_006.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x1544463d0'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x154445d50'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x150930a50'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x1544457d0'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x1544451d0'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x1509319d0'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x154445ed0'] | Shape: (79, 133) | Values: [[0.0098107 0.0098107 0.00977812 ... 0.01979067 0.01975604 0.01975604] | [0.00961295 0.00961295 0.00952388 ... 0.01824047 0.01795631 0.01787678] | [0.01039665 0.01039665 0.01020258 ... 0.01897964 0.01913258 0.01914486] | ... | [0.07238788 0.07238788 0.08586626 ... 0.0927832 0.09265059 0.09264398] | [0.07901261 0.07901261 0.08784271 ... 0.08837423 0.08822111 0.08819736] | [0.08834698 0.08834698 0.09181098 ... 0.09051302 0.09045352 0.09052142]] | Min: 0.004079735854704791 | Max: 0.13671941182403904 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x1544c18d0'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x1544c2550'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x14dcef3d0'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x1544c20d0'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x1544c14d0'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x1544c32d0'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x1544c3950'] | Shape: (79, 133) | Values: [[0.01047203 0.01047203 0.01005625 ... 0.05296168 0.05254504 0.05254504] | [0.00987222 0.00987222 0.00962163 ... 0.05487486 0.05487486 0.05483357] | [0.01060059 0.01060059 0.01051259 ... 0.03503385 0.03484541 0.03459899] | ... | [0.07284539 0.07284539 0.08961911 ... 0.08926087 0.08945951 0.08945951] | [0.07937758 0.07937758 0.0862112 ... 0.08566146 0.08588471 0.08589202] | [0.08799997 0.08799997 0.09166232 ... 0.08897954 0.08890017 0.08888421]] | Min: 0.005778639158922619 | Max: 1.6155899738665087 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x1507bcb50'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x1507be050'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x1506b1350'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x1507bec50'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x1507bf750'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x1507bead0'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x1507be0d0'] | Shape: (79, 133) | Values: [[0.01825279 0.01825279 0.01931186 ... 0.02170999 0.02174101 0.0217422 ] | [0.01614506 0.01614506 0.01636665 ... 0.02128181 0.02121515 0.02126434] | [0.01976905 0.01976905 0.01985069 ... 0.01473055 0.01467527 0.01467527] | ... | [0.00501021 0.00501021 0.00458535 ... 0.01233692 0.01252973 0.01252973] | [0.00474996 0.00474996 0.00348994 ... 0.02102289 0.02105033 0.02106124] | [0.00280581 0.00280581 0.00272761 ... 0.01825986 0.01839879 0.01841848]] | Min: 0.0007035096174085572 | Max: 16.631343141838055 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x1503967d0'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x150396350'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x107e39c50'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x150396150'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x150394850'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x150ffadd0'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x1505ecfd0'] | Shape: (79, 133) | Values: [[0.00966926 0.00966926 0.00972027 ... 0.04839993 0.04878023 0.04907535] | [0.00914014 0.00914014 0.00947082 ... 0.06116167 0.06078523 0.06051578] | [0.01018308 0.01018308 0.00990115 ... 0.00281497 0.00282243 0.00282743] | ... | [0.0720962 0.0720962 0.089987 ... 0.08922937 0.08914909 0.08906875] | [0.07927976 0.07927976 0.08631817 ... 0.08918084 0.08928333 0.08936188] | [0.08792242 0.08792242 0.09117578 ... 0.09172198 0.09165289 0.09162828]] | Min: 0.0015129161039354549 | Max: 0.2000862444557275 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x152b93b50'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x151eb81d0'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x152b92d50'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x151eb8350'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x15158ff50'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x15158f850'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x152b92050'] | Shape: (79, 133) | Values: [[1.01806612 1.01806612 1.01805441 ... 0.19009366 0.19046086 0.19046393] | [1.03657351 1.03657351 1.03570294 ... 1.18683168 1.18750212 1.18750212] | [1.01638097 1.01638097 1.01754131 ... 0.22821797 0.22743062 0.22761428] | ... | [0.27726717 0.27726717 0.00326359 ... 0.2523025 0.25214303 0.25214303] | [0.16168686 0.16168686 0.16168686 ... 0.23802845 0.23802845 0.23802845] | [0.14520979 0.14520979 0.00139856 ... 0.00921546 0.00919979 0.00919979]] | Min: 0.0006038338330283952 | Max: 1728.9602499111581 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) Model: mesh: | RectilinearMesh2D: | Shape: : (79, 133) | x | RectilinearMesh1D | Number of Cells: | | 79 | Cell Centres: | | StatArray | | Name: Easting (m) | | Address:['0x151db5ed0'] | | Shape: (79,) | | Values: [ 0. 1. 2. ... 76. 77. 78.] | | Min: 0.0 | | Max: 78.0 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: Easting (m) | | Address:['0x151db4850'] | | Shape: (80,) | | Values: [-0.5 0.5 1.5 ... 76.5 77.5 78.5] | | Min: -0.5 | | Max: 78.5 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: | | Address:['0x150e8ee50'] | | Shape: (1,) | | Values: [0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | | y | RectilinearMesh1D | Number of Cells: | | 133 | Cell Centres: | | StatArray | | Name: elevation (m) | | Address:['0x151db4050'] | | Shape: (133,) | | Values: [ -2.08834586 -6.26503759 -10.44172932 ... -545.05827068 -549.23496241 | | -553.41165414] | | Min: -553.4116541353383 | | Max: -2.088345864661654 | | has_posterior: False | | Cell Edges: | | StatArray | | Name: elevation (m) | | Address:['0x152f22350'] | | Shape: (134,) | | Values: [ 0. -4.17669173 -8.35338346 ... -547.14661654 -551.32330827 | | -555.5 ] | | Min: -555.5 | | Max: 0.0 | | has_posterior: False | | log: | | None | relative_to: | | StatArray | | Name: Elevation (m) | | Address:['0x152b93750'] | | Shape: (79,) | | Values: [0. 0. 0. ... 0. 0. 0.] | | Min: 0.0 | | Max: 0.0 | | has_posterior: False | values: | StatArray | Name: Mean Conductivity ($\frac{S}{m}$) | Address:['0x151db6350'] | Shape: (79, 133) | Values: [[0.00057072 0.00057072 0.00056877 ... 0.00217761 0.00215943 0.00211521] | [0.00082354 0.00082354 0.0008294 ... 0.00298401 0.00293347 0.00293347] | [0.00054038 0.00054038 0.0005437 ... 0.00501624 0.00501549 0.00501855] | ... | [0.0083681 0.0083681 0.00871023 ... 0.1658159 0.16567791 0.16567791] | [0.00946963 0.00946963 0.00949168 ... 0.01082899 0.01148046 0.01150977] | [0.00850773 0.00850773 0.00858401 ... 0.00817936 0.00837781 0.00837708]] | Min: 0.00035436638709702436 | Max: 15.596752715337677 | has_posterior: False self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) self.n_components=1, self.nTimes=array([26, 19]) | .. code-block:: Python import argparse import matplotlib.pyplot as plt import numpy as np from geobipy import Model from geobipy import Inference2D def plot_2d_summary(folder, data_type, model_type): #%% # Inference for a line of inferences # ++++++++++++++++++++++++++++++++++ # # We can instantiate the inference handler by providing a path to the directory containing # HDF5 files generated by GeoBIPy. # # The InfereceXD classes are low memory. They only read information from the HDF5 files # as and when it is needed. # # The first time you use these classes to create plots, expect longer initial processing times. # I precompute expensive properties and store them in the HDF5 files for later use. from numpy.random import Generator from numpy.random import PCG64DXSM generator = PCG64DXSM(seed=0) prng = Generator(generator) #%% results_2d = Inference2D.fromHdf('{}/{}/{}/0.0.h5'.format(folder, data_type, model_type), prng=prng) kwargs = { "log" : 10, "cmap" : 'jet' } fig = plt.figure(figsize=(16, 8)) plt.suptitle("{} {}".format(data_type, model_type)) gs0 = fig.add_gridspec(6, 2, hspace=1.0) true_model = Model.create_synthetic_model(model_type) kwargs['vmin'] = np.log10(np.min(true_model.values)) kwargs['vmax'] = np.log10(np.max(true_model.values)) ax = fig.add_subplot(gs0[0, 0]) true_model.pcolor(flipY=True, ax=ax, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax, xlabel=False, ylabel=False); results_2d.plot_elevation(linewidth=0.3, ax=ax, xlabel=False, ylabel=False); plt.ylim([-550, 60]) print(results_2d.mean_parameters().summary) ax1 = fig.add_subplot(gs0[0, 1], sharex=ax, sharey=ax) results_2d.plot_mean_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); # By adding the useVariance keyword, we can make regions of lower confidence more transparent ax1 = fig.add_subplot(gs0[1, 1], sharex=ax, sharey=ax) results_2d.plot_mode_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); # # # # # We can also choose to keep parameters above the DOI opaque. # # # # results_2d.compute_doi() # # # # plt.subplot(313) # # # # results_2d.plot_mean_model(use_variance=True, mask_below_doi=True, **kwargs); # # # # results_2d.plot_data_elevation(linewidth=0.3); # # # # results_2d.plot_elevation(linewidth=0.3); ax1 = fig.add_subplot(gs0[2, 1], sharex=ax, sharey=ax) results_2d.plot_best_model(ax=ax1, wrap_clabel=True, **kwargs); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1.set_title('Best model') del kwargs['vmin'] del kwargs['vmax'] ax1 = fig.add_subplot(gs0[3, 1], sharex=ax, sharey=ax); ax1.set_title('5%') results_2d.plot_percentile(ax=ax1, percent=0.05, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[4, 1], sharex=ax, sharey=ax); ax1.set_title('50%') results_2d.plot_percentile(ax=ax1, percent=0.5, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[5, 1], sharex=ax, sharey=ax); ax1.set_title('95%') results_2d.plot_percentile(ax=ax1, percent=0.95, wrap_clabel=True, **kwargs) results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); #%% # We can plot the parameter values that produced the highest posterior ax1 = fig.add_subplot(gs0[2, 0], sharex=ax) results_2d.plot_k_layers(ax=ax1, wrap_ylabel=True) ax1 = fig.add_subplot(gs0[1, 0], sharex=ax) ll, bb, ww, hh = ax1.get_position().bounds ax1.set_position([ll, bb, ww*0.8, hh]) results_2d.plot_channel_saturation(ax=ax1, wrap_ylabel=True) results_2d.plot_burned_in(ax=ax1, underlay=True) #%% # Now we can start plotting some more interesting posterior properties. # How about the confidence? ax1 = fig.add_subplot(gs0[3, 0], sharex=ax, sharey=ax) results_2d.plot_confidence(ax=ax1); results_2d.plot_data_elevation(ax=ax1, linewidth=0.3); results_2d.plot_elevation(ax=ax1, linewidth=0.3); #%% # We can take the interface depth posterior for each data point, # and display an interface probability cross section # This posterior can be washed out, so the clim_scaling keyword lets me saturate # the top and bottom 0.5% of the colour range ax1 = fig.add_subplot(gs0[4, 0], sharex=ax, sharey=ax) ax1.set_title('P(Interface)') results_2d.plot_interfaces(cmap='Greys', clim_scaling=0.5, ax=ax1); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); ax1 = fig.add_subplot(gs0[5, 0], sharex=ax, sharey=ax) results_2d.plot_entropy(cmap='Greys', clim_scaling=0.5, ax=ax1); results_2d.plot_data_elevation(linewidth=0.3, ax=ax1); results_2d.plot_elevation(linewidth=0.3, ax=ax1); # plt.show() plt.savefig('{}_{}.png'.format(data_type, model_type), dpi=300) if __name__ == '__main__': types = ['glacial', 'saline_clay', 'resistive_dolomites', 'resistive_basement', 'coastal_salt_water', 'ice_over_salt_water'] for model in types: # try: plot_2d_summary('../../../Parallel_Inference/', "skytem", model) # except Exception as e: # print(model) # print(e) # pass .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 21.139 seconds) .. _sphx_glr_download_examples_Inference_2D_plot_inference_2d_skytem.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inference_2d_skytem.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inference_2d_skytem.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_inference_2d_skytem.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_