.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/Statistics/plot_histogram_2d.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_Statistics_plot_histogram_2d.py: Histogram 2D ------------ This 2D histogram class allows efficient updating of histograms, plotting and saving as HDF5. .. GENERATED FROM PYTHON SOURCE LINES 11-21 .. code-block:: Python import h5py import geobipy from geobipy import StatArray from geobipy import Histogram import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from geobipy import RectilinearMesh2D import numpy as np .. GENERATED FROM PYTHON SOURCE LINES 22-23 Create some histogram bins in x and y .. GENERATED FROM PYTHON SOURCE LINES 23-27 .. code-block:: Python x = StatArray(np.linspace(-4.0, 4.0, 100), 'Variable 1') y = StatArray(np.linspace(-4.0, 4.0, 105), 'Variable 2') mesh = RectilinearMesh2D(x_edges=x, y_edges=y) .. GENERATED FROM PYTHON SOURCE LINES 28-29 Instantiate .. GENERATED FROM PYTHON SOURCE LINES 29-31 .. code-block:: Python H = Histogram(mesh) .. GENERATED FROM PYTHON SOURCE LINES 32-33 Generate some random numbers .. GENERATED FROM PYTHON SOURCE LINES 33-36 .. code-block:: Python a = np.random.randn(1000000) b = np.random.randn(1000000) .. GENERATED FROM PYTHON SOURCE LINES 37-38 Update the histogram counts .. GENERATED FROM PYTHON SOURCE LINES 38-40 .. code-block:: Python H.update(a, b) .. GENERATED FROM PYTHON SOURCE LINES 41-59 .. code-block:: Python plt.figure() plt.subplot(131) plt.title("2D Histogram") _ = H.plot(cmap='gray_r') plt.subplot(132) H.pdf.plot(cmap='gray_r') plt.subplot(133) H.pmf.plot(cmap='gray_r') plt.figure() plt.subplot(131) H.cdf(axis=0).plot() plt.subplot(132) H.cdf(axis=1).plot() plt.subplot(133) H.cdf().plot() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_001.png :alt: 2D Histogram :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_001.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_002.png :alt: plot histogram 2d :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_002.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none (, , ) .. GENERATED FROM PYTHON SOURCE LINES 60-61 We can overlay the histogram with its credible intervals .. GENERATED FROM PYTHON SOURCE LINES 61-67 .. code-block:: Python plt.figure() plt.title("90% credible intervals overlain") H.pcolor(cmap='gray_r') H.plotCredibleIntervals(axis=0, percent=95.0) _ = H.plotCredibleIntervals(axis=1, percent=95.0) .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_003.png :alt: 90% credible intervals overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 68-69 Generate marginal histograms along an axis .. GENERATED FROM PYTHON SOURCE LINES 69-72 .. code-block:: Python h1 = H.marginalize(axis=0) h2 = H.marginalize(axis=1) .. GENERATED FROM PYTHON SOURCE LINES 73-74 Note that the names of the variables are automatically displayed .. GENERATED FROM PYTHON SOURCE LINES 74-81 .. code-block:: Python plt.figure() plt.suptitle("Marginals along each axis") plt.subplot(121) h1.plot() plt.subplot(122) _ = h2.plot() .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_004.png :alt: Marginals along each axis :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 82-84 Create a combination plot with marginal histograms. sphinx_gallery_thumbnail_number = 3 .. GENERATED FROM PYTHON SOURCE LINES 84-102 .. code-block:: Python plt.figure() gs = gridspec.GridSpec(5, 5) gs.update(wspace=0.3, hspace=0.3) ax = [plt.subplot(gs[1:, :4])] H.pcolor(colorbar = False) ax.append(plt.subplot(gs[:1, :4])) h = H.marginalize(axis=0).plot() plt.xlabel(''); plt.ylabel('') plt.xticks([]); plt.yticks([]) ax[-1].spines["left"].set_visible(False) ax.append(plt.subplot(gs[1:, 4:])) h = H.marginalize(axis=1).plot(transpose=True) plt.ylabel(''); plt.xlabel('') plt.yticks([]); plt.xticks([]) ax[-1].spines["bottom"].set_visible(False) .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_005.png :alt: plot histogram 2d :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 103-104 Take the mean or median estimates from the histogram .. GENERATED FROM PYTHON SOURCE LINES 104-107 .. code-block:: Python mean = H.mean() median = H.median() .. GENERATED FROM PYTHON SOURCE LINES 108-124 .. code-block:: Python plt.figure(figsize=(9.5, 5)) plt.suptitle("Mean, median, and credible interval overlain") ax = plt.subplot(121) H.pcolor(cmap='gray_r', colorbar=False) H.plotCredibleIntervals(axis=0) H.plotMedian(axis=0, color='g') H.plotMean(axis=0, color='y') plt.legend() plt.subplot(122, sharex=ax, sharey=ax) H.pcolor(cmap='gray_r', colorbar=False) H.plotCredibleIntervals(axis=1) H.plotMedian(axis=1, color='g') H.plotMean(axis=1, color='y') plt.legend() .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_006.png :alt: Mean, median, and credible interval overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_006.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 125-126 Get the range between credible intervals .. GENERATED FROM PYTHON SOURCE LINES 126-128 .. code-block:: Python H.credible_range(percent=95.0) .. rst-class:: sphx-glr-script-out .. code-block:: none StatArray([3.63636364, 3.23232323, 3.87878788, ..., 3.23232323, 3.15151515, 4.12121212]) .. GENERATED FROM PYTHON SOURCE LINES 129-130 We can map the credible range to an opacity or transparency .. GENERATED FROM PYTHON SOURCE LINES 130-148 .. code-block:: Python H.opacity() H.transparency() # H.animate(0, 'test.mp4') import h5py with h5py.File('h2d.h5', 'w') as f: H.toHdf(f, 'h2d') with h5py.File('h2d.h5', 'r') as f: H1 = Histogram.fromHdf(f['h2d']) plt.close('all') x = StatArray(5.0 + np.linspace(-4.0, 4.0, 100), 'Variable 1') y = StatArray(10.0 + np.linspace(-4.0, 4.0, 105), 'Variable 2') mesh = RectilinearMesh2D(x_edges=x, x_relative_to=5.0, y_edges=y, y_relative_to=10.0) .. GENERATED FROM PYTHON SOURCE LINES 149-150 Instantiate .. GENERATED FROM PYTHON SOURCE LINES 150-152 .. code-block:: Python H = Histogram(mesh) .. GENERATED FROM PYTHON SOURCE LINES 153-154 Generate some random numbers .. GENERATED FROM PYTHON SOURCE LINES 154-157 .. code-block:: Python a = np.random.randn(1000000) + 5.0 b = np.random.randn(1000000) + 10.0 .. GENERATED FROM PYTHON SOURCE LINES 158-159 Update the histogram counts .. GENERATED FROM PYTHON SOURCE LINES 159-161 .. code-block:: Python H.update(a, b) .. GENERATED FROM PYTHON SOURCE LINES 162-179 .. code-block:: Python plt.figure() plt.subplot(131) plt.title("2D Histogram") _ = H.plot(cmap='gray_r') plt.subplot(132) H.pdf.plot(cmap='gray_r') plt.subplot(133) H.pmf.plot(cmap='gray_r') plt.figure() plt.subplot(131) H.cdf(axis=0).plot() plt.subplot(132) H.cdf(axis=1).plot() plt.subplot(133) H.cdf().plot() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_007.png :alt: 2D Histogram :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_007.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_008.png :alt: plot histogram 2d :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_008.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none (, , ) .. GENERATED FROM PYTHON SOURCE LINES 180-181 We can overlay the histogram with its credible intervals .. GENERATED FROM PYTHON SOURCE LINES 181-191 .. code-block:: Python plt.figure() plt.title("90% credible intervals overlain") H.pcolor(cmap='gray_r') H.plotCredibleIntervals(axis=0, percent=95.0) _ = H.plotCredibleIntervals(axis=1, percent=95.0) # Generate marginal histograms along an axis h1 = H.marginalize(axis=0) h2 = H.marginalize(axis=1) .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_009.png :alt: 90% credible intervals overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_009.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 192-193 Note that the names of the variables are automatically displayed .. GENERATED FROM PYTHON SOURCE LINES 193-200 .. code-block:: Python plt.figure() plt.suptitle("Marginals along each axis") plt.subplot(121) h1.plot() plt.subplot(122) _ = h2.plot() .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_010.png :alt: Marginals along each axis :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_010.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 201-203 Create a combination plot with marginal histograms. sphinx_gallery_thumbnail_number = 3 .. GENERATED FROM PYTHON SOURCE LINES 203-221 .. code-block:: Python plt.figure() gs = gridspec.GridSpec(5, 5) gs.update(wspace=0.3, hspace=0.3) ax = [plt.subplot(gs[1:, :4])] H.pcolor(colorbar = False) ax.append(plt.subplot(gs[:1, :4])) h = H.marginalize(axis=0).plot() plt.xlabel(''); plt.ylabel('') plt.xticks([]); plt.yticks([]) ax[-1].spines["left"].set_visible(False) ax.append(plt.subplot(gs[1:, 4:])) h = H.marginalize(axis=1).plot(transpose=True) plt.ylabel(''); plt.xlabel('') plt.yticks([]); plt.xticks([]) ax[-1].spines["bottom"].set_visible(False) .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_011.png :alt: plot histogram 2d :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_011.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 222-223 Take the mean or median estimates from the histogram .. GENERATED FROM PYTHON SOURCE LINES 223-226 .. code-block:: Python mean = H.mean() median = H.median() .. GENERATED FROM PYTHON SOURCE LINES 227-243 .. code-block:: Python plt.figure(figsize=(9.5, 5)) plt.suptitle("Mean, median, and credible interval overlain") ax = plt.subplot(121) H.pcolor(cmap='gray_r', colorbar=False) H.plotCredibleIntervals(axis=0) H.plotMedian(axis=0, color='g') H.plotMean(axis=0, color='y') plt.legend() plt.subplot(122, sharex=ax, sharey=ax) H.pcolor(cmap='gray_r', colorbar=False) H.plotCredibleIntervals(axis=1) H.plotMedian(axis=1, color='g') H.plotMean(axis=1, color='y') plt.legend() .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_012.png :alt: Mean, median, and credible interval overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_012.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 244-245 Get the range between credible intervals .. GENERATED FROM PYTHON SOURCE LINES 245-247 .. code-block:: Python H.credible_range(percent=95.0) .. rst-class:: sphx-glr-script-out .. code-block:: none StatArray([4.36363636, 3.47474747, 4.36363636, ..., 2.90909091, 3.31313131, 3.63636364]) .. GENERATED FROM PYTHON SOURCE LINES 248-249 We can map the credible range to an opacity or transparency .. GENERATED FROM PYTHON SOURCE LINES 249-306 .. code-block:: Python H.opacity() H.transparency() # # H.animate(0, 'test.mp4') with h5py.File('h2d.h5', 'w') as f: H.toHdf(f, 'h2d') with h5py.File('h2d.h5', 'r') as f: H1 = Histogram.fromHdf(f['h2d']) plt.figure(figsize=(9.5, 5)) plt.suptitle("Mean, median, and credible interval overlain") ax = plt.subplot(121) H1.pcolor(cmap='gray_r', colorbar=False) H1.plotCredibleIntervals(axis=0) H1.plotMedian(axis=0, color='g') H1.plotMean(axis=0, color='y') plt.legend() plt.subplot(122, sharex=ax, sharey=ax) H1.pcolor(cmap='gray_r', colorbar=False) H1.plotCredibleIntervals(axis=1) H1.plotMedian(axis=1, color='g') H1.plotMean(axis=1, color='y') plt.legend() with h5py.File('h2d.h5', 'w') as f: H.createHdf(f, 'h2d', add_axis=StatArray(np.arange(3.0), name='Easting', units="m")) for i in range(3): H.writeHdf(f, 'h2d', index=i) with h5py.File('h2d.h5', 'r') as f: H1 = Histogram.fromHdf(f['h2d'], index=0) plt.figure(figsize=(9.5, 5)) plt.suptitle("Mean, median, and credible interval overlain") ax = plt.subplot(121) H1.pcolor(cmap='gray_r', colorbar=False) H1.plotCredibleIntervals(axis=0) H1.plotMedian(axis=0, color='g') H1.plotMean(axis=0, color='y') plt.legend() plt.subplot(122, sharex=ax, sharey=ax) H1.pcolor(cmap='gray_r', colorbar=False) H1.plotCredibleIntervals(axis=1) H1.plotMedian(axis=1, color='g') H1.plotMean(axis=1, color='y') plt.legend() with h5py.File('h2d.h5', 'r') as f: H1 = Histogram.fromHdf(f['h2d']) # H1.pyvista_mesh().save('h3d_read.vtk') plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_013.png :alt: Mean, median, and credible interval overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_013.png :class: sphx-glr-multi-img * .. image-sg:: /examples/Statistics/images/sphx_glr_plot_histogram_2d_014.png :alt: Mean, median, and credible interval overlain :srcset: /examples/Statistics/images/sphx_glr_plot_histogram_2d_014.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 5.027 seconds) .. _sphx_glr_download_examples_Statistics_plot_histogram_2d.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_histogram_2d.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_histogram_2d.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_histogram_2d.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_