Tempest Datapoint Class

Credits: We would like to thank Ross Brodie at Geoscience Australia for his airborne time domain forward modeller https://github.com/GeoscienceAustralia/ga-aem

For ground-based time domain data, we are using Dieter Werthmuller’s python package Empymod https://empymod.github.io/

Thanks to Dieter for his help getting Empymod ready for incorporation into GeoBIPy

from os.path import join
import numpy as np
import h5py
import matplotlib.pyplot as plt
from geobipy import TempestData
# from geobipy import TemDataPoint
from geobipy import RectilinearMesh1D
from geobipy import Model
from geobipy import StatArray
from geobipy import Distribution
from geobipy import get_prng

dataFolder = "..//..//supplementary//data//"
# dataFolder = "source//examples//supplementary//Data"

# Obtaining a tempest datapoint from a dataset
# ++++++++++++++++++++++++++++++++++++++++++++
# More often than not, our observed data is stored in a file on disk.
# We can read in a dataset and pull datapoints from it.
#
# For more information about the time domain data set, see :ref:`Time domain dataset`

# The data file name
dataFile = dataFolder + 'tempest_saline_clay.csv'
# The EM system file name
systemFile = dataFolder + 'Tempest.stm'

# Prepare the dataset so that we can read a point at a time.
Dataset = TempestData._initialize_sequential_reading(dataFile, systemFile)
# Get a datapoint from the file.
tdp = Dataset._read_record(0)

plt.figure()
tdp.plot()

prng = get_prng(seed=146100583096709124601953385843316024947)
Time Domain EM Data
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])
self.n_components=2, self.nTimes=array([15])

Using a tempest domain datapoint

We can define a 1D layered earth model, and use it to predict some data

par = StatArray(np.r_[0.01, 0.1, 1.], "Conductivity", "$\frac{S}{m}$")
mod = Model(mesh=RectilinearMesh1D(edges=np.r_[0.0, 50.0, 75.0, np.inf]), values=par)

par = StatArray(np.logspace(-3, 3, 30), "Conductivity", "$\frac{S}{m}$")
e = np.linspace(0, 350, 31); e[-1] = np.inf
mod = Model(mesh=RectilinearMesh1D(edges=e), values=par)

Forward model the data

tdp.forward(mod)

print('primary', tdp.primary_field)
print('sx', tdp.secondary_field[:15])
print('sz', tdp.secondary_field[15:])

# #%%
# plt.figure()
# plt.subplot(121)
# _ = mod.pcolor(transpose=True)
# plt.subplot(122)
# _ = tdp.plot()
# _ = tdp.plot_predicted()
# plt.tight_layout()
# plt.suptitle('Model and response')

# #%%
# # plt.figure()
# # tdp.plotDataResidual(xscale='log')
# # plt.title('data residual')

# #%%
# # Compute the sensitivity matrix for a given model
J = tdp.sensitivity(mod)
# plt.figure()
# _ = np.abs(J).pcolor(equalize=True, log=10, flipY=True)

print('J', J)
# print('J shape', J.shape)
# print('sx 0', J[:16, 0])

tdp.fm_dlogc(mod)

print('new primary', tdp.primary_field)
print('sx', tdp.secondary_field[:15])
print('sz', tdp.secondary_field[15:])

print('new J', tdp.sensitivity_matrix)
primary [34.27253219 17.55503397]
sx [4.46362582 2.52720951 2.10544857 1.76862398 1.52893914 1.38117676
 1.19246619 1.10920301 0.94437018 0.81202664 0.67054942 0.4124596
 0.34346631 0.27359586 0.19875285]
sz [6.47100177 4.53101158 3.87594468 3.43396174 3.10487058 2.80230168
 2.59759025 2.34406113 2.09040444 1.83288007 1.59137993 1.34037776
 1.05345525 0.79969548 0.56994112]
J [[ 1.13463137e-01  1.49920887e-01  1.76789170e-01  1.79809001e-01
   1.49232157e-01  9.28385121e-02  3.82492975e-02  8.70404368e-03
   7.17305034e-04 -2.13238764e-04 -3.69663472e-04 -5.69915094e-04
  -8.66319388e-04 -1.29165072e-03 -1.87152454e-03 -2.59562194e-03
  -3.36123923e-03 -3.90030818e-03 -3.77459399e-03 -2.64263369e-03
  -8.86540172e-04  2.51618719e-04  2.30305587e-04 -6.44400641e-06
  -7.48897278e-06  7.03319747e-07 -1.06012557e-08 -1.01809840e-09
   1.13341751e-11  7.27489718e-13]
 [ 2.09383016e-02  3.20412212e-02  4.74815387e-02  6.68394476e-02
   8.66127424e-02  9.82359342e-02  9.01124001e-02  5.92842924e-02
   2.34205425e-02  4.15453831e-03 -1.09167097e-04 -5.65296487e-04
  -8.64759189e-04 -1.28934957e-03 -1.86840434e-03 -2.59169317e-03
  -3.35694331e-03 -3.89678338e-03 -3.77361484e-03 -2.64536287e-03
  -8.91147400e-04  2.49122146e-04  2.30371889e-04 -6.22013409e-06
  -7.50559762e-06  7.02225318e-07 -1.04664062e-08 -1.02489023e-09
   1.15994185e-11  7.25910166e-13]
 [ 1.04188675e-02  1.61552555e-02  2.45575508e-02  3.61804723e-02
   5.07045737e-02  6.55611414e-02  7.44548187e-02  6.86847323e-02
   4.55777737e-02  1.80379279e-02  2.98696559e-03 -3.85293966e-04
  -8.60809279e-04 -1.28714626e-03 -1.86528098e-03 -2.58777374e-03
  -3.35265612e-03 -3.89326199e-03 -3.77262920e-03 -2.64807737e-03
  -8.95745356e-04  2.46622607e-04  2.30434500e-04 -5.99618798e-06
  -7.52209743e-06  7.01118939e-07 -1.03312747e-08 -1.03167228e-09
   1.18645190e-11  7.24296662e-13]
 [ 5.59306619e-03  8.73427922e-03  1.34567371e-02  2.03060295e-02
   2.96541856e-02  4.11011150e-02  5.23902533e-02  5.84048942e-02
   5.26194169e-02  3.39153269e-02  1.29270864e-02  1.84115255e-03
  -7.26349266e-04 -1.28187560e-03 -1.86068331e-03 -2.58190508e-03
  -3.34624172e-03 -3.88798693e-03 -3.77113807e-03 -2.65212048e-03
  -9.02624129e-04  2.42867556e-04  2.30521193e-04 -5.66013350e-06
  -7.54660150e-06  6.99435958e-07 -1.01280238e-08 -1.04182633e-09
   1.22618909e-11  7.21872310e-13]
 [ 2.90057967e-03  4.55298073e-03  7.08113868e-03  1.08624892e-02
   1.63131443e-02  2.36956230e-02  3.26444333e-02  4.13290515e-02
   4.57247118e-02  4.08416457e-02  2.60308912e-02  9.65207055e-03
   9.85979321e-04 -1.17532082e-03 -1.85153793e-03 -2.57222629e-03
  -3.33558713e-03 -3.87921268e-03 -3.76862112e-03 -2.65878596e-03
  -9.14042109e-04  2.36594638e-04  2.30647153e-04 -5.09972880e-06
  -7.58680811e-06  6.96570853e-07 -9.78784817e-09 -1.05870121e-09
   1.29234653e-11  7.17787479e-13]
 [ 1.52006455e-03  2.39426129e-03  3.74644180e-03  5.80697177e-03
   8.87383693e-03  1.32671851e-02  1.91687386e-02  2.62386370e-02
   3.29616199e-02  3.61240640e-02  3.18888293e-02  1.99839155e-02
   7.06087232e-03  1.66263257e-04 -1.75822596e-03 -2.55553075e-03
  -3.31861213e-03 -3.86514848e-03 -3.76449138e-03 -2.66930910e-03
  -9.32273995e-04  2.26471992e-04  2.30800241e-04 -4.19807425e-06
  -7.64974377e-06  6.91803908e-07 -9.23713659e-09 -1.08570231e-09
   1.39851809e-11  7.11116040e-13]
 [ 7.95172245e-04  1.25562666e-03  1.97296556e-03  3.07922945e-03
   4.75914088e-03  7.24897325e-03  1.07971005e-02  1.55309299e-02
   2.11471314e-02  2.63969405e-02  2.87019743e-02  2.50612120e-02
   1.53752412e-02  4.96252008e-03 -6.93865522e-04 -2.46676098e-03
  -3.29044003e-03 -3.84255990e-03 -3.75760102e-03 -2.68583695e-03
  -9.61436534e-04  2.10008122e-04  2.30920381e-04 -2.73869233e-06
  -7.74706913e-06  6.83678713e-07 -8.33661124e-09 -1.12904183e-09
   1.56973846e-11  7.00029332e-13]
 [ 4.25261235e-04  6.72742356e-04  1.06013791e-03  1.66216067e-03
   2.58781456e-03  3.98821239e-03  6.05390242e-03  8.97919887e-03
   1.28478445e-02  1.73740944e-02  2.14865063e-02  2.30512177e-02
   1.96897031e-02  1.15139729e-02  2.96683343e-03 -1.66596036e-03
  -3.20516657e-03 -3.80728921e-03 -3.74651522e-03 -2.71020663e-03
  -1.00569525e-03  1.84371944e-04  2.30799698e-04 -4.84184630e-07
  -7.88644214e-06  6.70126101e-07 -6.92193641e-09 -1.19519648e-09
   1.83301097e-11  6.82210948e-13]
 [ 2.34933380e-04  3.72120311e-04  5.87563585e-04  9.24055086e-04
   1.44556439e-03  2.24464388e-03  3.44801505e-03  5.21202871e-03
   7.68804416e-03  1.09185107e-02  1.46108113e-02  1.77928517e-02
   1.86360965e-02  1.52676336e-02  8.10520819e-03  1.04131721e-03
  -2.63131518e-03 -3.73025495e-03 -3.72857047e-03 -2.74413358e-03
  -1.07006043e-03  1.45642247e-04  2.29929941e-04  2.87848665e-06
  -8.06931787e-06  6.47601643e-07 -4.75428545e-09 -1.29229582e-09
   2.22379274e-11  6.53984309e-13]
 [ 1.30756207e-04  2.07280357e-04  3.27738594e-04  5.16541357e-04
   8.10756512e-04  1.26542784e-03  1.95946411e-03  2.99935495e-03
   4.51300993e-03  6.61582186e-03  9.31508227e-03  1.23107970e-02
   1.47115349e-02  1.49431150e-02  1.15588764e-02  5.23660250e-03
  -5.73138740e-04 -3.30841709e-03 -3.68438731e-03 -2.79051701e-03
  -1.16480763e-03  8.53486040e-05  2.27003150e-04  8.00168945e-06
  -8.28895296e-06  6.07735187e-07 -1.30360184e-09 -1.43725413e-09
   2.81764182e-11  6.06718206e-13]
 [ 7.22510490e-05  1.14578847e-04  1.81325240e-04  2.86211332e-04
   4.50297609e-04  7.05396979e-04  1.09843511e-03  1.69603618e-03
   2.58670571e-03  3.87354585e-03  5.64161145e-03  7.87098502e-03
   1.02631180e-02  1.20097562e-02  1.17690090e-02  8.45394621e-03
   2.93181526e-03 -1.70637976e-03 -3.39858476e-03 -2.84225442e-03
  -1.30307918e-03 -1.03503204e-05  2.18657320e-04  1.58217247e-05
  -8.47882767e-06  5.32996039e-07  4.34656784e-09 -1.65220866e-09
   3.72779086e-11  5.22736206e-13]
 [ 3.95026702e-05  6.26387983e-05  9.91713508e-05  1.56690100e-04
   2.46931485e-04  3.87830492e-04  6.06339421e-04  9.41941625e-04
   1.45012168e-03  2.20331827e-03  3.28295938e-03  4.74864806e-03
   6.56022990e-03  8.42866192e-03  9.63261572e-03  9.04853595e-03
   5.90657380e-03  1.23034377e-03 -2.18521995e-03 -2.74868554e-03
  -1.49123522e-03 -1.61531888e-04  1.96768608e-04  2.72584271e-05
  -8.38949284e-06  3.88493568e-07  1.35446119e-08 -1.94849087e-09
   5.08041309e-11  3.64993874e-13]
 [ 2.13302188e-05  3.38065070e-05  5.35289820e-05  8.46302466e-05
   1.33533863e-04  2.10135477e-04  3.29495064e-04  5.14128716e-04
   7.96786401e-04  1.22298690e-03  1.85102174e-03  2.74369919e-03
   3.93975771e-03  5.38502235e-03  6.80696424e-03  7.57576392e-03
   6.78053378e-03  3.94457111e-03  2.15665526e-04 -1.95254195e-03
  -1.62830063e-03 -3.90294330e-04  1.43098447e-04  4.19348826e-05
  -7.33235638e-06  1.17651461e-07  2.68312100e-08 -2.22584790e-09
   6.77078320e-11  6.05952429e-14]
 [ 1.12282264e-05  1.78635903e-05  2.83779899e-05  4.50017482e-05
   7.12127249e-05  1.12398570e-04  1.76830540e-04  2.77044763e-04
   4.31681368e-04  6.67639104e-04  1.02184383e-03  1.54055267e-03
   2.27116188e-03  3.23625864e-03  4.37388475e-03  5.43408279e-03
   5.87962823e-03  5.00262101e-03  2.59289849e-03 -1.49287398e-04
  -1.27340318e-03 -6.43452187e-04  2.61268892e-05  5.34053467e-05
  -3.94810565e-06 -3.05244973e-07  3.82165478e-08 -1.98123010e-09
   7.45275097e-11 -4.39700593e-13]
 [-1.11093671e-07  7.10535889e-06  1.35366601e-05  2.19781779e-05
   3.51361530e-05  5.59144579e-05  8.85688469e-05  1.39638386e-04
   2.19017512e-04  3.41374294e-04  5.27767291e-04  8.06871862e-04
   1.21409005e-03  1.78443357e-03  2.53102265e-03  3.39739027e-03
   4.17930449e-03  4.46028641e-03  3.73004540e-03  1.92649310e-03
   6.02109747e-05 -5.46118843e-04 -1.65157591e-04  3.49402847e-05
   3.51467636e-06 -6.95157016e-07  2.72069882e-08 -1.89202945e-10
   2.98055790e-11 -8.12511279e-13]
 [ 1.60115776e-01  2.07639005e-01  2.40739052e-01  2.40418419e-01
   1.95315442e-01  1.18491902e-01  4.73745473e-02  1.02531362e-02
   4.69362345e-04 -8.07910478e-04 -1.28235918e-03 -1.94787493e-03
  -2.91478879e-03 -4.27143769e-03 -6.07088001e-03 -8.23824413e-03
  -1.04051447e-02 -1.17238309e-02 -1.09338137e-02 -7.24529691e-03
  -2.09096265e-03  9.16106903e-04  6.40571274e-04 -3.66220252e-05
  -1.99238748e-05  2.10579717e-06 -4.09112096e-08 -2.42384411e-09
   9.13480086e-12  2.32731922e-12]
 [ 3.99049002e-02  5.96318887e-02  8.59664978e-02  1.17218850e-01
   1.46454033e-01  1.59425949e-01  1.39779316e-01  8.75691904e-02
   3.26948727e-02  5.05097075e-03 -9.50475020e-04 -1.94008031e-03
  -2.91003069e-03 -4.26459057e-03 -6.06176966e-03 -8.22717236e-03
  -1.03937132e-02 -1.17155821e-02 -1.09336607e-02 -7.25551303e-03
  -2.10499275e-03  9.09398001e-04  6.41073913e-04 -3.59986191e-05
  -1.99811866e-05  2.10354294e-06 -4.05254837e-08 -2.44562026e-09
   9.94338045e-12  2.32347000e-12]
 [ 2.16198667e-02  3.28716981e-02  4.88428050e-02  7.00790633e-02
   9.52414896e-02  1.18873805e-01  1.29690843e-01  1.14383571e-01
   7.21782301e-02  2.67964266e-02  3.52733196e-03 -1.69518035e-03
  -2.90192906e-03 -4.25790316e-03 -6.05267040e-03 -8.21612440e-03
  -1.03823020e-02 -1.17073359e-02 -1.09334821e-02 -7.26568542e-03
  -2.11900043e-03  9.02677484e-04  6.41566168e-04 -3.53746867e-05
  -2.00381687e-05  2.10125370e-06 -4.01388440e-08 -2.46737314e-09
   1.07518133e-11  2.31958355e-12]
 [ 1.24091321e-02  1.90564608e-02  2.87983061e-02  4.24941186e-02
   6.04667325e-02  8.13351045e-02  1.00186303e-01  1.07452619e-01
   9.27111100e-02  5.68740221e-02  2.01638666e-02  1.75813947e-03
  -2.70249482e-03 -4.24495952e-03 -6.03917855e-03 -8.19959261e-03
  -1.03652224e-02 -1.16949726e-02 -1.09331643e-02 -7.28085871e-03
  -2.13996801e-03  8.92574157e-04  6.42284216e-04 -3.44377831e-05
  -2.01229935e-05  2.09775124e-06 -3.95570901e-08 -2.49995719e-09
   1.19641780e-11  2.31371842e-12]
 [ 6.87159982e-03  1.06324798e-02  1.62674299e-02  2.44871980e-02
   3.59798522e-02  5.09597818e-02  6.81957311e-02  8.35225080e-02
   8.90014884e-02  7.61884128e-02  4.61438285e-02  1.56180977e-02
   1.32114555e-04 -4.07104257e-03 -6.01438026e-03 -8.17225661e-03
  -1.03368472e-02 -1.16743805e-02 -1.09325083e-02 -7.30592964e-03
  -2.17480092e-03  8.75678068e-04  6.43428763e-04 -3.28737917e-05
  -2.02626942e-05  2.09173742e-06 -3.85828775e-08 -2.55414876e-09
   1.39840656e-11  2.30379831e-12]
 [ 3.82116333e-03  5.94406923e-03  9.17070818e-03  1.39871419e-02
   2.09813107e-02  3.07053382e-02  4.32855595e-02  5.76022800e-02
   7.00703384e-02  7.40359904e-02  6.26565252e-02  3.71815296e-02
   1.15702573e-02 -1.69857971e-03 -5.84363357e-03 -8.12650040e-03
  -1.02915657e-02 -1.16413079e-02 -1.09311212e-02 -7.34565975e-03
  -2.23049839e-03  8.48364443e-04  6.45129429e-04 -3.03531360e-05
  -2.04827781e-05  2.08159694e-06 -3.70042389e-08 -2.64096811e-09
   1.72295320e-11  2.28750613e-12]
 [ 2.11278271e-03  3.29974701e-03  5.12169089e-03  7.88335047e-03
   1.19925627e-02  1.79371609e-02  2.61634885e-02  3.67410000e-02
   4.86692847e-02  5.88706114e-02  6.17401348e-02  5.16334079e-02
   2.97676770e-02  7.84982402e-03 -3.83602557e-03 -7.94329070e-03
  -1.02171873e-02 -1.15879985e-02 -1.09280378e-02 -7.40844285e-03
  -2.31978636e-03  8.03816816e-04  6.47519482e-04 -2.62622224e-05
  -2.08268690e-05  2.06397280e-06 -3.44189048e-08 -2.78060500e-09
   2.24734966e-11  2.26025209e-12]
 [ 1.18787916e-03  1.86079679e-03  2.90072503e-03  4.49316096e-03
   6.89992517e-03  1.04683047e-02  1.56072826e-02  2.26762962e-02
   3.16873527e-02  4.17028524e-02  4.99874496e-02  5.17013957e-02
   4.21733381e-02  2.28200440e-02  3.82984440e-03 -6.33720101e-03
  -1.00245588e-02 -1.15046567e-02 -1.09214085e-02 -7.50193333e-03
  -2.45576522e-03  7.34156901e-04  6.50341911e-04 -1.99157631e-05
  -2.13290962e-05  2.03378663e-06 -3.03475874e-08 -2.99444288e-09
   3.05612182e-11  2.21589868e-12]
 [ 6.85874915e-04  1.07682023e-03  1.68386072e-03  2.61987206e-03
   4.04914185e-03  6.20161303e-03  9.37821632e-03  1.39243312e-02
   2.01215828e-02  2.79102957e-02  3.63473409e-02  4.28853433e-02
   4.32376197e-02  3.36297749e-02  1.60073986e-02 -4.06785684e-04
  -8.80728389e-03 -1.13318343e-02 -1.09066424e-02 -7.63408387e-03
  -2.65456561e-03  6.28266935e-04  6.52593634e-04 -1.03896087e-05
  -2.20113234e-05  1.98192000e-06 -2.40851870e-08 -3.30993214e-09
   4.26225630e-11  2.14448663e-12]
 [ 3.97492384e-04  6.25157499e-04  9.79921161e-04  1.52970807e-03
   2.37536579e-03  3.66271307e-03  5.59386199e-03  8.42905152e-03
   1.24572773e-02  1.78898983e-02  2.45996014e-02  3.16300164e-02
   3.65896683e-02  3.56805170e-02  2.59498079e-02  9.86642743e-03
  -4.10943284e-03 -1.04067976e-02 -1.08453857e-02 -7.81980250e-03
  -2.94955068e-03  4.61942047e-04  6.51481607e-04  4.26410089e-06
  -2.28927981e-05  1.88642473e-06 -1.40539393e-08 -3.78496662e-09
   6.10881749e-11  2.02231492e-12]
 [ 2.28080390e-04  3.59214465e-04  5.64123292e-04  8.82901267e-04
   1.37590272e-03  2.13229122e-03  3.28010534e-03  4.99495403e-03
   7.49889373e-03  1.10291699e-02  1.57351196e-02  2.14354311e-02
   2.71796318e-02  3.07485869e-02  2.88194031e-02  1.91824631e-02
   4.74579200e-03 -6.62815391e-03 -1.02522566e-02 -8.05421115e-03
  -3.38560057e-03  1.94539854e-04  6.38800599e-04  2.69696365e-05
  -2.38478094e-05  1.69920478e-06  2.54712999e-09 -4.50079969e-09
   8.97509521e-11  1.79896722e-12]
 [ 1.29157970e-04  2.03638462e-04  3.20279179e-04  5.02283991e-04
   7.84929060e-04  1.22110741e-03  1.88855988e-03  2.89810780e-03
   4.40002044e-03  6.58049511e-03  9.62949036e-03  1.36425076e-02
   1.83983022e-02  2.29735567e-02  2.53448895e-02  2.26700994e-02
   1.34473467e-02  9.93070247e-04 -7.36015610e-03 -7.99203352e-03
  -3.99599890e-03 -2.35776594e-04  5.92920699e-04  6.10047295e-05
  -2.42531710e-05  1.31928881e-06  3.00943322e-08 -5.52361380e-09
   1.33382890e-10  1.36385417e-12]
 [ 7.20880061e-05  1.13758034e-04  1.79138645e-04  2.81407647e-04
   4.40747144e-04  6.87743061e-04  1.06807700e-03  1.64853558e-03
   2.52359197e-03  3.81977707e-03  5.69034409e-03  8.28314284e-03
   1.16486754e-02  1.55401010e-02  1.90830522e-02  2.04784376e-02
   1.73880609e-02  9.00684847e-03 -1.02276636e-03 -6.16193045e-03
  -4.55276841e-03 -9.05861401e-04  4.62099921e-04  1.06772207e-04
  -2.22070456e-05  5.69979180e-07  7.14251079e-08 -6.62044639e-09
   1.91310127e-10  4.83737910e-13]
 [ 3.95655826e-05  6.25753935e-05  9.87713313e-05  1.55544424e-04
   2.44279987e-04  3.82372569e-04  5.96103961e-04  9.24568516e-04
   1.42459850e-03  2.17591241e-03  3.28383735e-03  4.87272362e-03
   7.05478183e-03  9.84575428e-03  1.29883829e-02  1.56762996e-02
   1.63521364e-02  1.31874963e-02  6.03082080e-03 -1.38179333e-03
  -3.86761777e-03 -1.71060819e-03  1.49403391e-04  1.48327671e-04
  -1.36249992e-05 -6.68291558e-07  1.10857913e-07 -6.33418159e-09
   2.26727066e-10 -1.05451995e-12]
 [ 1.60007270e-05  3.08385747e-05  5.05626410e-05  8.02783444e-05
   1.26736452e-04  1.99365944e-04  3.12397549e-04  4.87311178e-04
   7.55978090e-04  1.16456467e-03  1.77748717e-03  2.67915445e-03
   3.96768519e-03  5.72788161e-03  7.96032467e-03  1.04376098e-02
   1.24913986e-02  1.28874625e-02  1.02847605e-02  4.83824498e-03
  -3.09434558e-04 -1.64870226e-03 -4.15885174e-04  1.11378943e-04
   7.62988405e-06 -1.95004388e-06  8.68582964e-08 -1.28316523e-09
   1.11041966e-10 -2.41585978e-12]]
new primary [34.27253219 17.55503397]
sx [4.46362582 2.52720951 2.10544857 1.76862398 1.52893914 1.38117676
 1.19246619 1.10920301 0.94437018 0.81202664 0.67054942 0.4124596
 0.34346631 0.27359586 0.19875285]
sz [6.47100177 4.53101158 3.87594468 3.43396174 3.10487058 2.80230168
 2.59759025 2.34406113 2.09040444 1.83288007 1.59137993 1.34037776
 1.05345525 0.79969548 0.56994112]
new J [[ 1.13463137e-01  1.49920887e-01  1.76789170e-01  1.79809001e-01
   1.49232157e-01  9.28385121e-02  3.82492975e-02  8.70404368e-03
   7.17305034e-04 -2.13238764e-04 -3.69663472e-04 -5.69915094e-04
  -8.66319388e-04 -1.29165072e-03 -1.87152454e-03 -2.59562194e-03
  -3.36123923e-03 -3.90030818e-03 -3.77459399e-03 -2.64263369e-03
  -8.86540172e-04  2.51618719e-04  2.30305587e-04 -6.44400641e-06
  -7.48897278e-06  7.03319747e-07 -1.06012557e-08 -1.01809840e-09
   1.13341751e-11  7.27489718e-13]
 [ 2.09383016e-02  3.20412212e-02  4.74815387e-02  6.68394476e-02
   8.66127424e-02  9.82359342e-02  9.01124001e-02  5.92842924e-02
   2.34205425e-02  4.15453831e-03 -1.09167097e-04 -5.65296487e-04
  -8.64759189e-04 -1.28934957e-03 -1.86840434e-03 -2.59169317e-03
  -3.35694331e-03 -3.89678338e-03 -3.77361484e-03 -2.64536287e-03
  -8.91147400e-04  2.49122146e-04  2.30371889e-04 -6.22013409e-06
  -7.50559762e-06  7.02225318e-07 -1.04664062e-08 -1.02489023e-09
   1.15994185e-11  7.25910166e-13]
 [ 1.04188675e-02  1.61552555e-02  2.45575508e-02  3.61804723e-02
   5.07045737e-02  6.55611414e-02  7.44548187e-02  6.86847323e-02
   4.55777737e-02  1.80379279e-02  2.98696559e-03 -3.85293966e-04
  -8.60809279e-04 -1.28714626e-03 -1.86528098e-03 -2.58777374e-03
  -3.35265612e-03 -3.89326199e-03 -3.77262920e-03 -2.64807737e-03
  -8.95745356e-04  2.46622607e-04  2.30434500e-04 -5.99618798e-06
  -7.52209743e-06  7.01118939e-07 -1.03312747e-08 -1.03167228e-09
   1.18645190e-11  7.24296662e-13]
 [ 5.59306619e-03  8.73427922e-03  1.34567371e-02  2.03060295e-02
   2.96541856e-02  4.11011150e-02  5.23902533e-02  5.84048942e-02
   5.26194169e-02  3.39153269e-02  1.29270864e-02  1.84115255e-03
  -7.26349266e-04 -1.28187560e-03 -1.86068331e-03 -2.58190508e-03
  -3.34624172e-03 -3.88798693e-03 -3.77113807e-03 -2.65212048e-03
  -9.02624129e-04  2.42867556e-04  2.30521193e-04 -5.66013350e-06
  -7.54660150e-06  6.99435958e-07 -1.01280238e-08 -1.04182633e-09
   1.22618909e-11  7.21872310e-13]
 [ 2.90057967e-03  4.55298073e-03  7.08113868e-03  1.08624892e-02
   1.63131443e-02  2.36956230e-02  3.26444333e-02  4.13290515e-02
   4.57247118e-02  4.08416457e-02  2.60308912e-02  9.65207055e-03
   9.85979321e-04 -1.17532082e-03 -1.85153793e-03 -2.57222629e-03
  -3.33558713e-03 -3.87921268e-03 -3.76862112e-03 -2.65878596e-03
  -9.14042109e-04  2.36594638e-04  2.30647153e-04 -5.09972880e-06
  -7.58680811e-06  6.96570853e-07 -9.78784817e-09 -1.05870121e-09
   1.29234653e-11  7.17787479e-13]
 [ 1.52006455e-03  2.39426129e-03  3.74644180e-03  5.80697177e-03
   8.87383693e-03  1.32671851e-02  1.91687386e-02  2.62386370e-02
   3.29616199e-02  3.61240640e-02  3.18888293e-02  1.99839155e-02
   7.06087232e-03  1.66263257e-04 -1.75822596e-03 -2.55553075e-03
  -3.31861213e-03 -3.86514848e-03 -3.76449138e-03 -2.66930910e-03
  -9.32273995e-04  2.26471992e-04  2.30800241e-04 -4.19807425e-06
  -7.64974377e-06  6.91803908e-07 -9.23713659e-09 -1.08570231e-09
   1.39851809e-11  7.11116040e-13]
 [ 7.95172245e-04  1.25562666e-03  1.97296556e-03  3.07922945e-03
   4.75914088e-03  7.24897325e-03  1.07971005e-02  1.55309299e-02
   2.11471314e-02  2.63969405e-02  2.87019743e-02  2.50612120e-02
   1.53752412e-02  4.96252008e-03 -6.93865522e-04 -2.46676098e-03
  -3.29044003e-03 -3.84255990e-03 -3.75760102e-03 -2.68583695e-03
  -9.61436534e-04  2.10008122e-04  2.30920381e-04 -2.73869233e-06
  -7.74706913e-06  6.83678713e-07 -8.33661124e-09 -1.12904183e-09
   1.56973846e-11  7.00029332e-13]
 [ 4.25261235e-04  6.72742356e-04  1.06013791e-03  1.66216067e-03
   2.58781456e-03  3.98821239e-03  6.05390242e-03  8.97919887e-03
   1.28478445e-02  1.73740944e-02  2.14865063e-02  2.30512177e-02
   1.96897031e-02  1.15139729e-02  2.96683343e-03 -1.66596036e-03
  -3.20516657e-03 -3.80728921e-03 -3.74651522e-03 -2.71020663e-03
  -1.00569525e-03  1.84371944e-04  2.30799698e-04 -4.84184630e-07
  -7.88644214e-06  6.70126101e-07 -6.92193641e-09 -1.19519648e-09
   1.83301097e-11  6.82210948e-13]
 [ 2.34933380e-04  3.72120311e-04  5.87563585e-04  9.24055086e-04
   1.44556439e-03  2.24464388e-03  3.44801505e-03  5.21202871e-03
   7.68804416e-03  1.09185107e-02  1.46108113e-02  1.77928517e-02
   1.86360965e-02  1.52676336e-02  8.10520819e-03  1.04131721e-03
  -2.63131518e-03 -3.73025495e-03 -3.72857047e-03 -2.74413358e-03
  -1.07006043e-03  1.45642247e-04  2.29929941e-04  2.87848665e-06
  -8.06931787e-06  6.47601643e-07 -4.75428545e-09 -1.29229582e-09
   2.22379274e-11  6.53984309e-13]
 [ 1.30756207e-04  2.07280357e-04  3.27738594e-04  5.16541357e-04
   8.10756512e-04  1.26542784e-03  1.95946411e-03  2.99935495e-03
   4.51300993e-03  6.61582186e-03  9.31508227e-03  1.23107970e-02
   1.47115349e-02  1.49431150e-02  1.15588764e-02  5.23660250e-03
  -5.73138740e-04 -3.30841709e-03 -3.68438731e-03 -2.79051701e-03
  -1.16480763e-03  8.53486040e-05  2.27003150e-04  8.00168945e-06
  -8.28895296e-06  6.07735187e-07 -1.30360184e-09 -1.43725413e-09
   2.81764182e-11  6.06718206e-13]
 [ 7.22510490e-05  1.14578847e-04  1.81325240e-04  2.86211332e-04
   4.50297609e-04  7.05396979e-04  1.09843511e-03  1.69603618e-03
   2.58670571e-03  3.87354585e-03  5.64161145e-03  7.87098502e-03
   1.02631180e-02  1.20097562e-02  1.17690090e-02  8.45394621e-03
   2.93181526e-03 -1.70637976e-03 -3.39858476e-03 -2.84225442e-03
  -1.30307918e-03 -1.03503204e-05  2.18657320e-04  1.58217247e-05
  -8.47882767e-06  5.32996039e-07  4.34656784e-09 -1.65220866e-09
   3.72779086e-11  5.22736206e-13]
 [ 3.95026702e-05  6.26387983e-05  9.91713508e-05  1.56690100e-04
   2.46931485e-04  3.87830492e-04  6.06339421e-04  9.41941625e-04
   1.45012168e-03  2.20331827e-03  3.28295938e-03  4.74864806e-03
   6.56022990e-03  8.42866192e-03  9.63261572e-03  9.04853595e-03
   5.90657380e-03  1.23034377e-03 -2.18521995e-03 -2.74868554e-03
  -1.49123522e-03 -1.61531888e-04  1.96768608e-04  2.72584271e-05
  -8.38949284e-06  3.88493568e-07  1.35446119e-08 -1.94849087e-09
   5.08041309e-11  3.64993874e-13]
 [ 2.13302188e-05  3.38065070e-05  5.35289820e-05  8.46302466e-05
   1.33533863e-04  2.10135477e-04  3.29495064e-04  5.14128716e-04
   7.96786401e-04  1.22298690e-03  1.85102174e-03  2.74369919e-03
   3.93975771e-03  5.38502235e-03  6.80696424e-03  7.57576392e-03
   6.78053378e-03  3.94457111e-03  2.15665526e-04 -1.95254195e-03
  -1.62830063e-03 -3.90294330e-04  1.43098447e-04  4.19348826e-05
  -7.33235638e-06  1.17651461e-07  2.68312100e-08 -2.22584790e-09
   6.77078320e-11  6.05952429e-14]
 [ 1.12282264e-05  1.78635903e-05  2.83779899e-05  4.50017482e-05
   7.12127249e-05  1.12398570e-04  1.76830540e-04  2.77044763e-04
   4.31681368e-04  6.67639104e-04  1.02184383e-03  1.54055267e-03
   2.27116188e-03  3.23625864e-03  4.37388475e-03  5.43408279e-03
   5.87962823e-03  5.00262101e-03  2.59289849e-03 -1.49287398e-04
  -1.27340318e-03 -6.43452187e-04  2.61268892e-05  5.34053467e-05
  -3.94810565e-06 -3.05244973e-07  3.82165478e-08 -1.98123010e-09
   7.45275097e-11 -4.39700593e-13]
 [-1.11093671e-07  7.10535889e-06  1.35366601e-05  2.19781779e-05
   3.51361530e-05  5.59144579e-05  8.85688469e-05  1.39638386e-04
   2.19017512e-04  3.41374294e-04  5.27767291e-04  8.06871862e-04
   1.21409005e-03  1.78443357e-03  2.53102265e-03  3.39739027e-03
   4.17930449e-03  4.46028641e-03  3.73004540e-03  1.92649310e-03
   6.02109747e-05 -5.46118843e-04 -1.65157591e-04  3.49402847e-05
   3.51467636e-06 -6.95157016e-07  2.72069882e-08 -1.89202945e-10
   2.98055790e-11 -8.12511279e-13]
 [ 1.60115776e-01  2.07639005e-01  2.40739052e-01  2.40418419e-01
   1.95315442e-01  1.18491902e-01  4.73745473e-02  1.02531362e-02
   4.69362345e-04 -8.07910478e-04 -1.28235918e-03 -1.94787493e-03
  -2.91478879e-03 -4.27143769e-03 -6.07088001e-03 -8.23824413e-03
  -1.04051447e-02 -1.17238309e-02 -1.09338137e-02 -7.24529691e-03
  -2.09096265e-03  9.16106903e-04  6.40571274e-04 -3.66220252e-05
  -1.99238748e-05  2.10579717e-06 -4.09112096e-08 -2.42384411e-09
   9.13480086e-12  2.32731922e-12]
 [ 3.99049002e-02  5.96318887e-02  8.59664978e-02  1.17218850e-01
   1.46454033e-01  1.59425949e-01  1.39779316e-01  8.75691904e-02
   3.26948727e-02  5.05097075e-03 -9.50475020e-04 -1.94008031e-03
  -2.91003069e-03 -4.26459057e-03 -6.06176966e-03 -8.22717236e-03
  -1.03937132e-02 -1.17155821e-02 -1.09336607e-02 -7.25551303e-03
  -2.10499275e-03  9.09398001e-04  6.41073913e-04 -3.59986191e-05
  -1.99811866e-05  2.10354294e-06 -4.05254837e-08 -2.44562026e-09
   9.94338045e-12  2.32347000e-12]
 [ 2.16198667e-02  3.28716981e-02  4.88428050e-02  7.00790633e-02
   9.52414896e-02  1.18873805e-01  1.29690843e-01  1.14383571e-01
   7.21782301e-02  2.67964266e-02  3.52733196e-03 -1.69518035e-03
  -2.90192906e-03 -4.25790316e-03 -6.05267040e-03 -8.21612440e-03
  -1.03823020e-02 -1.17073359e-02 -1.09334821e-02 -7.26568542e-03
  -2.11900043e-03  9.02677484e-04  6.41566168e-04 -3.53746867e-05
  -2.00381687e-05  2.10125370e-06 -4.01388440e-08 -2.46737314e-09
   1.07518133e-11  2.31958355e-12]
 [ 1.24091321e-02  1.90564608e-02  2.87983061e-02  4.24941186e-02
   6.04667325e-02  8.13351045e-02  1.00186303e-01  1.07452619e-01
   9.27111100e-02  5.68740221e-02  2.01638666e-02  1.75813947e-03
  -2.70249482e-03 -4.24495952e-03 -6.03917855e-03 -8.19959261e-03
  -1.03652224e-02 -1.16949726e-02 -1.09331643e-02 -7.28085871e-03
  -2.13996801e-03  8.92574157e-04  6.42284216e-04 -3.44377831e-05
  -2.01229935e-05  2.09775124e-06 -3.95570901e-08 -2.49995719e-09
   1.19641780e-11  2.31371842e-12]
 [ 6.87159982e-03  1.06324798e-02  1.62674299e-02  2.44871980e-02
   3.59798522e-02  5.09597818e-02  6.81957311e-02  8.35225080e-02
   8.90014884e-02  7.61884128e-02  4.61438285e-02  1.56180977e-02
   1.32114555e-04 -4.07104257e-03 -6.01438026e-03 -8.17225661e-03
  -1.03368472e-02 -1.16743805e-02 -1.09325083e-02 -7.30592964e-03
  -2.17480092e-03  8.75678068e-04  6.43428763e-04 -3.28737917e-05
  -2.02626942e-05  2.09173742e-06 -3.85828775e-08 -2.55414876e-09
   1.39840656e-11  2.30379831e-12]
 [ 3.82116333e-03  5.94406923e-03  9.17070818e-03  1.39871419e-02
   2.09813107e-02  3.07053382e-02  4.32855595e-02  5.76022800e-02
   7.00703384e-02  7.40359904e-02  6.26565252e-02  3.71815296e-02
   1.15702573e-02 -1.69857971e-03 -5.84363357e-03 -8.12650040e-03
  -1.02915657e-02 -1.16413079e-02 -1.09311212e-02 -7.34565975e-03
  -2.23049839e-03  8.48364443e-04  6.45129429e-04 -3.03531360e-05
  -2.04827781e-05  2.08159694e-06 -3.70042389e-08 -2.64096811e-09
   1.72295320e-11  2.28750613e-12]
 [ 2.11278271e-03  3.29974701e-03  5.12169089e-03  7.88335047e-03
   1.19925627e-02  1.79371609e-02  2.61634885e-02  3.67410000e-02
   4.86692847e-02  5.88706114e-02  6.17401348e-02  5.16334079e-02
   2.97676770e-02  7.84982402e-03 -3.83602557e-03 -7.94329070e-03
  -1.02171873e-02 -1.15879985e-02 -1.09280378e-02 -7.40844285e-03
  -2.31978636e-03  8.03816816e-04  6.47519482e-04 -2.62622224e-05
  -2.08268690e-05  2.06397280e-06 -3.44189048e-08 -2.78060500e-09
   2.24734966e-11  2.26025209e-12]
 [ 1.18787916e-03  1.86079679e-03  2.90072503e-03  4.49316096e-03
   6.89992517e-03  1.04683047e-02  1.56072826e-02  2.26762962e-02
   3.16873527e-02  4.17028524e-02  4.99874496e-02  5.17013957e-02
   4.21733381e-02  2.28200440e-02  3.82984440e-03 -6.33720101e-03
  -1.00245588e-02 -1.15046567e-02 -1.09214085e-02 -7.50193333e-03
  -2.45576522e-03  7.34156901e-04  6.50341911e-04 -1.99157631e-05
  -2.13290962e-05  2.03378663e-06 -3.03475874e-08 -2.99444288e-09
   3.05612182e-11  2.21589868e-12]
 [ 6.85874915e-04  1.07682023e-03  1.68386072e-03  2.61987206e-03
   4.04914185e-03  6.20161303e-03  9.37821632e-03  1.39243312e-02
   2.01215828e-02  2.79102957e-02  3.63473409e-02  4.28853433e-02
   4.32376197e-02  3.36297749e-02  1.60073986e-02 -4.06785684e-04
  -8.80728389e-03 -1.13318343e-02 -1.09066424e-02 -7.63408387e-03
  -2.65456561e-03  6.28266935e-04  6.52593634e-04 -1.03896087e-05
  -2.20113234e-05  1.98192000e-06 -2.40851870e-08 -3.30993214e-09
   4.26225630e-11  2.14448663e-12]
 [ 3.97492384e-04  6.25157499e-04  9.79921161e-04  1.52970807e-03
   2.37536579e-03  3.66271307e-03  5.59386199e-03  8.42905152e-03
   1.24572773e-02  1.78898983e-02  2.45996014e-02  3.16300164e-02
   3.65896683e-02  3.56805170e-02  2.59498079e-02  9.86642743e-03
  -4.10943284e-03 -1.04067976e-02 -1.08453857e-02 -7.81980250e-03
  -2.94955068e-03  4.61942047e-04  6.51481607e-04  4.26410089e-06
  -2.28927981e-05  1.88642473e-06 -1.40539393e-08 -3.78496662e-09
   6.10881749e-11  2.02231492e-12]
 [ 2.28080390e-04  3.59214465e-04  5.64123292e-04  8.82901267e-04
   1.37590272e-03  2.13229122e-03  3.28010534e-03  4.99495403e-03
   7.49889373e-03  1.10291699e-02  1.57351196e-02  2.14354311e-02
   2.71796318e-02  3.07485869e-02  2.88194031e-02  1.91824631e-02
   4.74579200e-03 -6.62815391e-03 -1.02522566e-02 -8.05421115e-03
  -3.38560057e-03  1.94539854e-04  6.38800599e-04  2.69696365e-05
  -2.38478094e-05  1.69920478e-06  2.54712999e-09 -4.50079969e-09
   8.97509521e-11  1.79896722e-12]
 [ 1.29157970e-04  2.03638462e-04  3.20279179e-04  5.02283991e-04
   7.84929060e-04  1.22110741e-03  1.88855988e-03  2.89810780e-03
   4.40002044e-03  6.58049511e-03  9.62949036e-03  1.36425076e-02
   1.83983022e-02  2.29735567e-02  2.53448895e-02  2.26700994e-02
   1.34473467e-02  9.93070247e-04 -7.36015610e-03 -7.99203352e-03
  -3.99599890e-03 -2.35776594e-04  5.92920699e-04  6.10047295e-05
  -2.42531710e-05  1.31928881e-06  3.00943322e-08 -5.52361380e-09
   1.33382890e-10  1.36385417e-12]
 [ 7.20880061e-05  1.13758034e-04  1.79138645e-04  2.81407647e-04
   4.40747144e-04  6.87743061e-04  1.06807700e-03  1.64853558e-03
   2.52359197e-03  3.81977707e-03  5.69034409e-03  8.28314284e-03
   1.16486754e-02  1.55401010e-02  1.90830522e-02  2.04784376e-02
   1.73880609e-02  9.00684847e-03 -1.02276636e-03 -6.16193045e-03
  -4.55276841e-03 -9.05861401e-04  4.62099921e-04  1.06772207e-04
  -2.22070456e-05  5.69979180e-07  7.14251079e-08 -6.62044639e-09
   1.91310127e-10  4.83737910e-13]
 [ 3.95655826e-05  6.25753935e-05  9.87713313e-05  1.55544424e-04
   2.44279987e-04  3.82372569e-04  5.96103961e-04  9.24568516e-04
   1.42459850e-03  2.17591241e-03  3.28383735e-03  4.87272362e-03
   7.05478183e-03  9.84575428e-03  1.29883829e-02  1.56762996e-02
   1.63521364e-02  1.31874963e-02  6.03082080e-03 -1.38179333e-03
  -3.86761777e-03 -1.71060819e-03  1.49403391e-04  1.48327671e-04
  -1.36249992e-05 -6.68291558e-07  1.10857913e-07 -6.33418159e-09
   2.26727066e-10 -1.05451995e-12]
 [ 1.60007270e-05  3.08385747e-05  5.05626410e-05  8.02783444e-05
   1.26736452e-04  1.99365944e-04  3.12397549e-04  4.87311178e-04
   7.55978090e-04  1.16456467e-03  1.77748717e-03  2.67915445e-03
   3.96768519e-03  5.72788161e-03  7.96032467e-03  1.04376098e-02
   1.24913986e-02  1.28874625e-02  1.02847605e-02  4.83824498e-03
  -3.09434558e-04 -1.64870226e-03 -4.15885174e-04  1.11378943e-04
   7.62988405e-06 -1.95004388e-06  8.68582964e-08 -1.28316523e-09
   1.11041966e-10 -2.41585978e-12]]

Attaching statistical descriptors to the tempest datapoint

from numpy.random import Generator
from numpy.random import PCG64DXSM
generator = PCG64DXSM(seed=0)
prng = Generator(generator)

# Set relative errors for the primary fields, and secondary fields.
tdp.relative_error = np.r_[0.001, 0.001]

# Set the additive errors for
tdp.additive_error = np.hstack([[0.011474, 0.012810, 0.008507, 0.005154, 0.004742, 0.004477, 0.004168, 0.003539, 0.003352, 0.003213, 0.003161, 0.003122, 0.002587, 0.002038, 0.002201],
                                [0.007383, 0.005693, 0.005178, 0.003659, 0.003426, 0.003046, 0.003095, 0.003247, 0.002775, 0.002627, 0.002460, 0.002178, 0.001754, 0.001405, 0.001283]])
# Define a multivariate log normal distribution as the prior on the predicted data.
tdp.predictedData.prior = Distribution('MvLogNormal', tdp.data[tdp.active], tdp.std[tdp.active]**2.0, prng=prng)

This allows us to evaluate the likelihood of the predicted data

print(tdp.likelihood(log=True))
# Or the misfit
print(tdp.data_misfit())
-36389.6500813217
72940.71365767403

Plot the misfits for a range of half space conductivities

plt.figure()
plt.subplot(1, 2, 1)
_ = tdp.plot_halfspace_responses(-6.0, 4.0, 200)
plt.title("Halfspace responses")
Halfspace responses
Text(0.5, 1.0, 'Halfspace responses')

We can perform a quick search for the best fitting half space

halfspace = tdp.find_best_halfspace()
print('Best half space conductivity is {} $S/m$'.format(halfspace.values))
plt.subplot(1, 2, 2)
_ = tdp.plot()
_ = tdp.plot_predicted()

plt.figure()
tdp.plot_secondary_field()
tdp.plot_predicted_secondary_field()

# #%%
# # We can attach priors to the height of the datapoint,
# # the relative error multiplier, and the additive error noise floor

# Define the distributions used as priors.
relative_prior = Distribution('Uniform', min=np.r_[0.01, 0.01], max=np.r_[0.5, 0.5], prng=prng)
receiver_x_prior = Distribution('Uniform', min=np.float64(tdp.receiver.x) - 1.0, max=np.float64(tdp.receiver.x) + 1.0, prng=prng)
receiver_z_prior = Distribution('Uniform', min=np.float64(tdp.receiver.z) - 1.0, max=np.float64(tdp.receiver.z) + 1.0, prng=prng)
receiver_pitch_prior = Distribution('Uniform', min=tdp.receiver.pitch - 5.0, max=tdp.receiver.pitch + 5.0, prng=prng)
tdp.set_priors(relative_error_prior=relative_prior, receiver_x_prior=receiver_x_prior, receiver_z_prior=receiver_z_prior, receiver_pitch_prior=receiver_pitch_prior, prng=prng)
  • Time Domain EM Data
  • plot tempest datapoint
Best half space conductivity is [0.01830738] $S/m$
/Users/nfoks/codes/repositories/geobipy/documentation_source/source/examples/Datapoints/plot_tempest_datapoint.py:156: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  receiver_x_prior = Distribution('Uniform', min=np.float64(tdp.receiver.x) - 1.0, max=np.float64(tdp.receiver.x) + 1.0, prng=prng)
/Users/nfoks/codes/repositories/geobipy/documentation_source/source/examples/Datapoints/plot_tempest_datapoint.py:157: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  receiver_z_prior = Distribution('Uniform', min=np.float64(tdp.receiver.z) - 1.0, max=np.float64(tdp.receiver.z) + 1.0, prng=prng)

In order to perturb our solvable parameters, we need to attach proposal distributions

relative_proposal = Distribution('MvNormal', mean=tdp.relative_error, variance=2.5e-4, prng=prng)
receiver_x_proposal = Distribution('Normal', mean=tdp.receiver.x, variance = 0.01, prng=prng)
receiver_z_proposal = Distribution('Normal', mean=tdp.receiver.z, variance = 0.01, prng=prng)
receiver_pitch_proposal = Distribution('Normal', mean=tdp.receiver.pitch, variance = 0.01, prng=prng)
tdp.set_proposals(relative_error_proposal=relative_proposal,
                  receiver_x_proposal=receiver_x_proposal,
                  receiver_z_proposal=receiver_z_proposal,
                  receiver_pitch_proposal=receiver_pitch_proposal,
                  solve_additive_error=True, additive_error_proposal_variance=1e-4, prng=prng)

With priors set we can auto generate the posteriors

tdp.set_posteriors()

Perturb the datapoint and record the perturbations Note we are not using the priors to accept or reject perturbations.

for i in range(10):
    tdp.perturb()
    tdp.update_posteriors()

plt.show()

Total running time of the script: (0 minutes 1.659 seconds)

Gallery generated by Sphinx-Gallery