08: Working with tabular data in Pandas

54d22b11c96a438c91bd732677f86468

Not that type of Panda – Python’s Pandas package

Pandas is a powerful, flexible and easy to use open source data analysis and manipulation tool. Pandas is commonly used for operations that would normally be done in a spreadsheet environment and includes powerful data analysis and manipulation tools.

Let’s begin by importing the libraries and setting our data path

[1]:
from pathlib import Path
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.api as sm
from dataretrieval import nwis
from matplotlib.backends.backend_pdf import PdfPages
from scipy.signal import detrend

data_path = Path("..", "data", "pandas")

Get site information data for part of the Russian River near Guerneville, CA from NWIS

[2]:
bbox = (-123.10, 38.45, -122.90, 38.55)
info, metadata = nwis.get_info(bBox=[str(i) for i in bbox])
if 'geometry' in list(info):
    # dataretreival now returns as geopandas dataframe, drop "geometry" column for this example
    info.drop(columns=["geometry"], inplace=True)
---------------------------------------------------------------------------
SSLEOFError                               Traceback (most recent call last)
File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connectionpool.py:464, in HTTPConnectionPool._make_request(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)
    463 try:
--> 464     self._validate_conn(conn)
    465 except (SocketTimeout, BaseSSLError) as e:

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connectionpool.py:1093, in HTTPSConnectionPool._validate_conn(self, conn)
   1092 if conn.is_closed:
-> 1093     conn.connect()
   1095 # TODO revise this, see https://github.com/urllib3/urllib3/issues/2791

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connection.py:790, in HTTPSConnection.connect(self)
    788 server_hostname_rm_dot = server_hostname.rstrip(".")
--> 790 sock_and_verified = _ssl_wrap_socket_and_match_hostname(
    791     sock=sock,
    792     cert_reqs=self.cert_reqs,
    793     ssl_version=self.ssl_version,
    794     ssl_minimum_version=self.ssl_minimum_version,
    795     ssl_maximum_version=self.ssl_maximum_version,
    796     ca_certs=self.ca_certs,
    797     ca_cert_dir=self.ca_cert_dir,
    798     ca_cert_data=self.ca_cert_data,
    799     cert_file=self.cert_file,
    800     key_file=self.key_file,
    801     key_password=self.key_password,
    802     server_hostname=server_hostname_rm_dot,
    803     ssl_context=self.ssl_context,
    804     tls_in_tls=tls_in_tls,
    805     assert_hostname=self.assert_hostname,
    806     assert_fingerprint=self.assert_fingerprint,
    807 )
    808 self.sock = sock_and_verified.socket

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connection.py:969, in _ssl_wrap_socket_and_match_hostname(sock, cert_reqs, ssl_version, ssl_minimum_version, ssl_maximum_version, cert_file, key_file, key_password, ca_certs, ca_cert_dir, ca_cert_data, assert_hostname, assert_fingerprint, server_hostname, ssl_context, tls_in_tls)
    967         server_hostname = normalized
--> 969 ssl_sock = ssl_wrap_socket(
    970     sock=sock,
    971     keyfile=key_file,
    972     certfile=cert_file,
    973     key_password=key_password,
    974     ca_certs=ca_certs,
    975     ca_cert_dir=ca_cert_dir,
    976     ca_cert_data=ca_cert_data,
    977     server_hostname=server_hostname,
    978     ssl_context=context,
    979     tls_in_tls=tls_in_tls,
    980 )
    982 try:

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/util/ssl_.py:480, in ssl_wrap_socket(sock, keyfile, certfile, cert_reqs, ca_certs, server_hostname, ssl_version, ciphers, ssl_context, ca_cert_dir, key_password, ca_cert_data, tls_in_tls)
    478 context.set_alpn_protocols(ALPN_PROTOCOLS)
--> 480 ssl_sock = _ssl_wrap_socket_impl(sock, context, tls_in_tls, server_hostname)
    481 return ssl_sock

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/util/ssl_.py:524, in _ssl_wrap_socket_impl(sock, ssl_context, tls_in_tls, server_hostname)
    522     return SSLTransport(sock, ssl_context, server_hostname)
--> 524 return ssl_context.wrap_socket(sock, server_hostname=server_hostname)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/ssl.py:517, in SSLContext.wrap_socket(self, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname, session)
    511 def wrap_socket(self, sock, server_side=False,
    512                 do_handshake_on_connect=True,
    513                 suppress_ragged_eofs=True,
    514                 server_hostname=None, session=None):
    515     # SSLSocket class handles server_hostname encoding before it calls
    516     # ctx._wrap_socket()
--> 517     return self.sslsocket_class._create(
    518         sock=sock,
    519         server_side=server_side,
    520         do_handshake_on_connect=do_handshake_on_connect,
    521         suppress_ragged_eofs=suppress_ragged_eofs,
    522         server_hostname=server_hostname,
    523         context=self,
    524         session=session
    525     )

File ~/micromamba/envs/pyclass-docs/lib/python3.11/ssl.py:1104, in SSLSocket._create(cls, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname, context, session)
   1103                 raise ValueError("do_handshake_on_connect should not be specified for non-blocking sockets")
-> 1104             self.do_handshake()
   1105 except:

File ~/micromamba/envs/pyclass-docs/lib/python3.11/ssl.py:1382, in SSLSocket.do_handshake(self, block)
   1381         self.settimeout(None)
-> 1382     self._sslobj.do_handshake()
   1383 finally:

SSLEOFError: [SSL: UNEXPECTED_EOF_WHILE_READING] EOF occurred in violation of protocol (_ssl.c:1016)

During handling of the above exception, another exception occurred:

SSLError                                  Traceback (most recent call last)
File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connectionpool.py:787, in HTTPConnectionPool.urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)
    786 # Make the request on the HTTPConnection object
--> 787 response = self._make_request(
    788     conn,
    789     method,
    790     url,
    791     timeout=timeout_obj,
    792     body=body,
    793     headers=headers,
    794     chunked=chunked,
    795     retries=retries,
    796     response_conn=response_conn,
    797     preload_content=preload_content,
    798     decode_content=decode_content,
    799     **response_kw,
    800 )
    802 # Everything went great!

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connectionpool.py:488, in HTTPConnectionPool._make_request(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)
    487         new_e = _wrap_proxy_error(new_e, conn.proxy.scheme)
--> 488     raise new_e
    490 # conn.request() calls http.client.*.request, not the method in
    491 # urllib3.request. It also calls makefile (recv) on the socket.

SSLError: [SSL: UNEXPECTED_EOF_WHILE_READING] EOF occurred in violation of protocol (_ssl.c:1016)

The above exception was the direct cause of the following exception:

MaxRetryError                             Traceback (most recent call last)
File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/adapters.py:644, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)
    643 try:
--> 644     resp = conn.urlopen(
    645         method=request.method,
    646         url=url,
    647         body=request.body,
    648         headers=request.headers,
    649         redirect=False,
    650         assert_same_host=False,
    651         preload_content=False,
    652         decode_content=False,
    653         retries=self.max_retries,
    654         timeout=timeout,
    655         chunked=chunked,
    656     )
    658 except (ProtocolError, OSError) as err:

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/connectionpool.py:841, in HTTPConnectionPool.urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)
    839     new_e = ProtocolError("Connection aborted.", new_e)
--> 841 retries = retries.increment(
    842     method, url, error=new_e, _pool=self, _stacktrace=sys.exc_info()[2]
    843 )
    844 retries.sleep()

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/urllib3/util/retry.py:519, in Retry.increment(self, method, url, response, error, _pool, _stacktrace)
    518     reason = error or ResponseError(cause)
--> 519     raise MaxRetryError(_pool, url, reason) from reason  # type: ignore[arg-type]
    521 log.debug("Incremented Retry for (url='%s'): %r", url, new_retry)

MaxRetryError: HTTPSConnectionPool(host='waterservices.usgs.gov', port=443): Max retries exceeded with url: /nwis/site?bBox=-123.1%2C38.45%2C-122.9%2C38.55&siteOutput=Expanded&format=rdb (Caused by SSLError(SSLEOFError(8, '[SSL: UNEXPECTED_EOF_WHILE_READING] EOF occurred in violation of protocol (_ssl.c:1016)')))

During handling of the above exception, another exception occurred:

SSLError                                  Traceback (most recent call last)
Cell In[2], line 2
      1 bbox = (-123.10, 38.45, -122.90, 38.55)
----> 2 info, metadata = nwis.get_info(bBox=[str(i) for i in bbox])
      3 if 'geometry' in list(info):
      4     # dataretreival now returns as geopandas dataframe, drop "geometry" column for this example
      5     info.drop(columns=["geometry"], inplace=True)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/dataretrieval/nwis.py:816, in get_info(ssl_check, **kwargs)
    812 else:
    813     # cannot have both seriesCatalogOutput and the expanded format
    814     kwargs["siteOutput"] = "Expanded"
--> 816 response = query_waterservices("site", ssl_check=ssl_check, **kwargs)
    818 return _read_rdb(response.text), NWIS_Metadata(response, **kwargs)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/dataretrieval/nwis.py:633, in query_waterservices(service, ssl_check, **kwargs)
    629     kwargs["format"] = "rdb"
    631 url = WATERSERVICE_URL + service
--> 633 return query(url, payload=kwargs, ssl_check=ssl_check)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/dataretrieval/utils.py:190, in query(url, payload, delimiter, ssl_check)
    183 # for index in range(len(payload)):
    184 #    key, value = payload[index]
    185 #    payload[index] = (key, to_str(value))
    186
    187 # define the user agent for the query
    188 user_agent = {"user-agent": f"python-dataretrieval/{dataretrieval.__version__}"}
--> 190 response = requests.get(url, params=payload, headers=user_agent, verify=ssl_check)
    192 if response.status_code == 400:
    193     raise ValueError(
    194         f"Bad Request, check that your parameters are correct. URL: {response.url}"
    195     )

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/api.py:73, in get(url, params, **kwargs)
     62 def get(url, params=None, **kwargs):
     63     r"""Sends a GET request.
     64
     65     :param url: URL for the new :class:`Request` object.
   (...)     70     :rtype: requests.Response
     71     """
---> 73     return request("get", url, params=params, **kwargs)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/api.py:59, in request(method, url, **kwargs)
     55 # By using the 'with' statement we are sure the session is closed, thus we
     56 # avoid leaving sockets open which can trigger a ResourceWarning in some
     57 # cases, and look like a memory leak in others.
     58 with sessions.Session() as session:
---> 59     return session.request(method=method, url=url, **kwargs)

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/sessions.py:589, in Session.request(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)
    584 send_kwargs = {
    585     "timeout": timeout,
    586     "allow_redirects": allow_redirects,
    587 }
    588 send_kwargs.update(settings)
--> 589 resp = self.send(prep, **send_kwargs)
    591 return resp

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/sessions.py:703, in Session.send(self, request, **kwargs)
    700 start = preferred_clock()
    702 # Send the request
--> 703 r = adapter.send(request, **kwargs)
    705 # Total elapsed time of the request (approximately)
    706 elapsed = preferred_clock() - start

File ~/micromamba/envs/pyclass-docs/lib/python3.11/site-packages/requests/adapters.py:675, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)
    671         raise ProxyError(e, request=request)
    673     if isinstance(e.reason, _SSLError):
    674         # This branch is for urllib3 v1.22 and later.
--> 675         raise SSLError(e, request=request)
    677     raise ConnectionError(e, request=request)
    679 except ClosedPoolError as e:

SSLError: HTTPSConnectionPool(host='waterservices.usgs.gov', port=443): Max retries exceeded with url: /nwis/site?bBox=-123.1%2C38.45%2C-122.9%2C38.55&siteOutput=Expanded&format=rdb (Caused by SSLError(SSLEOFError(8, '[SSL: UNEXPECTED_EOF_WHILE_READING] EOF occurred in violation of protocol (_ssl.c:1016)')))
[3]:
info.to_csv(data_path / "site_info.csv", index=False)
info.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[3], line 1
----> 1 info.to_csv(data_path / "site_info.csv", index=False)
      2 info.head()

NameError: name 'info' is not defined

Wow that’s a lot of gages in this location, let’s info on all of them and then use this data to learn about pandas

The data returned to us from our NWIS query info was returned to us as pandas DataFrame. We’ll be working with this to start learning about the basics of pandas.

Viewing data in pandas

Pandas has built in methods to inspect DataFrame objects. We’ll look at a few handy methods:

  • .head(): inspect the first few rows of data

  • .tail(): inspect the last few rows of data

  • .index(): show the row indexes

  • .columns(): show the column names

  • .describe(): statistically describe the data

[4]:
info.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[4], line 1
----> 1 info.head()

NameError: name 'info' is not defined
[5]:
info.tail()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[5], line 1
----> 1 info.tail()

NameError: name 'info' is not defined
[6]:
# print the index names
print(info.index)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[6], line 2
      1 # print the index names
----> 2 print(info.index)

NameError: name 'info' is not defined
[7]:
# print the column names
print(info.columns)

# print the column names as a list
print(list(info))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[7], line 2
      1 # print the column names
----> 2 print(info.columns)
      4 # print the column names as a list
      5 print(list(info))

NameError: name 'info' is not defined

The describe() method is only useful for numerical data. This example is does not have a lot of useful data for describe(), however we’ll use it again later

[8]:
info.describe()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[8], line 1
----> 1 info.describe()

NameError: name 'info' is not defined

Getting data from a pandas dataframe

There are multiple methods to get data out of a pandas dataframe as either a “series”, numpy array, or a list

Let’s start by getting data as a series using a few methods

[9]:
# get a series of site numbers by key
info["site_no"]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[9], line 2
      1 # get a series of site numbers by key
----> 2 info["site_no"]

NameError: name 'info' is not defined
[10]:
# get station names by attribute
info.station_nm
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[10], line 2
      1 # get station names by attribute
----> 2 info.station_nm

NameError: name 'info' is not defined

getting data from a dataframe as a numpy array can be accomplished by using .values

[11]:
info.station_nm.values
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 info.station_nm.values

NameError: name 'info' is not defined

Selection by position

We can get data by position in the dataframe using the .iloc attribute

[12]:
info.iloc[0:2, 1:4]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[12], line 1
----> 1 info.iloc[0:2, 1:4]

NameError: name 'info' is not defined

Selection by label

Pandas allows the user to get data from the dataframe by index and column labels

[13]:
info.loc[0:3, ["site_no", "station_nm", "site_tp_cd"]]
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[13], line 1
----> 1 info.loc[0:3, ["site_no", "station_nm", "site_tp_cd"]]

NameError: name 'info' is not defined

Boolean indexing

pandas dataframes supports boolean indexing that allows a user to create a new dataframe with only the data that meets a boolean condition defined by the user.

Let’s get a dataframe of only groundwater sites from the info dataframe

[14]:
dfgw = info[info["site_tp_cd"] == "GW"]
dfgw
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[14], line 1
----> 1 dfgw = info[info["site_tp_cd"] == "GW"]
      2 dfgw

NameError: name 'info' is not defined

Reading and writing data to .csv files

Pandas has support to both read and write many types of files. For this example we are focusing on .csv files. For information on other file types that are supported see the ten minutes to pandas tutorial documentation

For this part we’ll write a new .csv file of the groundwater sites that we found in NWIS using to_csv().

to_csv() has a bunch of handy options for writing to file. For this example, I’m going to drop the index column while writing by passing index=False

[15]:
csv_file = data_path / "RussianRiverGWsites.csv"
dfgw.to_csv(csv_file, index=False)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[15], line 2
      1 csv_file = data_path / "RussianRiverGWsites.csv"
----> 2 dfgw.to_csv(csv_file, index=False)

NameError: name 'dfgw' is not defined

Now we can load the csv file back into a pandas dataframe with the read_csv() method.

[16]:
dfgw2 = pd.read_csv(csv_file)
dfgw2
[16]:
agency_cd site_no station_nm site_tp_cd lat_va long_va dec_lat_va dec_long_va coord_meth_cd coord_acy_cd ... local_time_fg reliability_cd gw_file_cd nat_aqfr_cd aqfr_cd aqfr_type_cd well_depth_va hole_depth_va depth_src_cd project_no
0 USGS 382713123030401 007N011W14NU01M GW 382712.5 1230303.5 38.453472 -123.050972 G 5 ... Y C YY Y NaN NaN NaN 81.70 NaN S GGMC200
1 USGS 382713123030403 007N011W14NU03M GW 382712.5 1230303.5 38.453472 -123.050972 G 5 ... Y C YY Y NaN NaN NaN 32.56 NaN S GGMC200
2 USGS 382808122565401 007N010W10H001M GW 382808.5 1225654.2 38.469028 -122.948389 G 5 ... Y C YY Y NaN NaN NaN 22.00 22.0 D 00BHM8187
3 USGS 382819123010001 007N010W07D001M GW 382819.9 1230100.8 38.472194 -123.016889 G 5 ... Y C YY N100CACSTL NaN NaN 99.00 110.0 D 9677BHM32
4 USGS 383001122540701 008N009W31C002M GW 383001.9 1225407.7 38.500528 -122.902139 G 5 ... Y C YY N100CACSTL NaN NaN 80.00 80.0 D 9677BHM32
5 USGS 383003122540401 008N009W31C003M GW 383003.3 1225404.4 38.500917 -122.901222 G 1 ... Y C YY Y N100CACSTL NaN NaN NaN NaN NaN 967760420
6 USGS 383003122540402 008N009W31C004M GW 383003.3 1225404.4 38.500917 -122.901222 G 1 ... Y C Y N100CACSTL NaN NaN NaN NaN NaN 967760420
7 USGS 383003122540403 008N009W31C005M GW 383003.3 1225404.4 38.500917 -122.901222 G 1 ... Y C YY Y N100CACSTL NaN NaN 25.00 NaN S 967760420
8 USGS 383016123041101 008N011W27N001M GW 383016.3 1230411.0 38.504528 -123.069722 G 5 ... Y C YY Y NaN NaN NaN 30.00 30.0 D 00BHM8187
9 USGS 383017122580301 008N010W28RU01M GW 383017.4 1225802.5 38.504833 -122.967361 G 5 ... Y C YY NaN NaN NaN 98.00 107.0 D NaN
10 USGS 383034122590701 008N010W29H004M GW 383034.4 1225907.9 38.509556 -122.985528 G 5 ... Y C YY Y N100CACSTL NaN NaN 99.00 110.0 D 9677BHM32

11 rows × 42 columns

Class exercise 1

Using the methods presented in this notebook create a DataFrame of surface water sites from the info dataframe, write it to a csv file named "RussianRiverSWsites.csv", and read it back in as a new DataFrame

[17]:
csv_name = data_path / "RussianRiverSWsites.csv"
dfsw = info[info.site_tp_cd == "ST"]
dfsw.to_csv(csv_name, index=False)

dfsw = pd.read_csv(csv_name)
dfsw.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[17], line 2
      1 csv_name = data_path / "RussianRiverSWsites.csv"
----> 2 dfsw = info[info.site_tp_cd == "ST"]
      3 dfsw.to_csv(csv_name, index=False)
      5 dfsw = pd.read_csv(csv_name)

NameError: name 'info' is not defined

Get timeseries data from NWIS for surface water sites

Now to start working with stream gage data from NWIS. We’re going to send all surface water sites to NWIS and get only sites with daily discharge measurements.

(11467002)

[18]:
# filter for only SW sites
dfsw = info[info.site_tp_cd == "ST"]

# create query
sites = dfsw.site_no.to_list()
pcode = "00060"
start_date = "1939-09-22"
end_date = "2023-12-31"
df, metadata = nwis.get_dv(
    sites=sites,
    start=start_date,
    end=end_date,
    parameterCd=pcode,
    multi_index=False
)
df.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[18], line 2
      1 # filter for only SW sites
----> 2 dfsw = info[info.site_tp_cd == "ST"]
      4 # create query
      5 sites = dfsw.site_no.to_list()

NameError: name 'info' is not defined

Awesome! There are two gages in this study area that have daily discharge data!

Inspect the data using .plot()

[19]:
ax = df.plot()
ax.set_ylabel(r"cubic meter per second")
ax.set_yscale("log")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[19], line 1
----> 1 ax = df.plot()
      2 ax.set_ylabel(r"cubic meter per second")
      3 ax.set_yscale("log")

NameError: name 'df' is not defined

Updating column names

Let’s update column names for these gages based on their locations instead of their USGS gage id. First we’ll get name information from the info class and then we’ll use the station name information to remap the column names.

the rename() method accepts a dictionary that is formatted {current_col_name: new_col_name}

[20]:
df
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[20], line 1
----> 1 df

NameError: name 'df' is not defined
[21]:
df2 = df[['site_no', '00060_Mean']].pivot(columns=['site_no'])
df2.columns = df2.columns.get_level_values(1)

site_names = {site_no: '_'.join(name.split()[:2]).lower() for site_no, name
              in info.groupby('site_no')['station_nm'].first().loc[df2.columns].items()}
df2.rename(columns=site_names, inplace=True)
df2.plot()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[21], line 1
----> 1 df2 = df[['site_no', '00060_Mean']].pivot(columns=['site_no'])
      2 df2.columns = df2.columns.get_level_values(1)
      4 site_names = {site_no: '_'.join(name.split()[:2]).lower() for site_no, name
      5               in info.groupby('site_no')['station_nm'].first().loc[df2.columns].items()}

NameError: name 'df' is not defined

Adding a new column of data to the dataframe

Adding new columns of data is relatively simple in pandas. The call signature is similar to a dictionary where df[“key”] = “some_array_of_values”

Let’s add a year column (water year) to the dataframe by getting the year from the index and adjusting it using np.where()

[22]:
df2['year'] = np.where(df2.index.month >=10, df2.index.year, df2.index.year - 1)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[22], line 1
----> 1 df2['year'] = np.where(df2.index.month >=10, df2.index.year, df2.index.year - 1)

NameError: name 'df2' is not defined

Manipulating data

Columns in a pandas dataframe can be manipulated similarly to working with a dictionary of numpy arrays. The discharge data units are \(\frac{ft^3}{s}\), let’s accumulate this to daily discharge in \(\frac {ft^3}{d}\).

The conversion for this is:

$ \frac{1 ft^3}{s} \times `:nbsphinx-math:frac{60s}{min}` \times `:nbsphinx-math:frac{60min}{hour}` \times `:nbsphinx-math:frac{24hours}{day}` \rightarrow `:nbsphinx-math:frac{ft^3}{day}` $

and then convert that to acre-feet (1 acre-ft = 43559.9)

[23]:
df2
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[23], line 1
----> 1 df2

NameError: name 'df2' is not defined
[24]:
conv = 60 * 60 * 24
df2["russian_r_cfd"] = df2.russian_r * conv
df2["russian_r_af"] = df2.russian_r_cfd / 43559.9
df2

# now let's plot up discharge from 2018 - 2020
dfplt = df2[(df2["year"] >= 2015) & (df2["year"] <= 2020)]
ax = dfplt["russian_r_af"].plot()
ax.set_yscale("log")

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[24], line 2
      1 conv = 60 * 60 * 24
----> 2 df2["russian_r_cfd"] = df2.russian_r * conv
      3 df2["russian_r_af"] = df2.russian_r_cfd / 43559.9
      4 df2

NameError: name 'df2' is not defined

Class exercise 2:

Using the methods described in the notebook. Convert the discharge for "austin_c" from \(\frac{m^3}{s}\) acre-ft by adding two additional fields to df2 named "austin_c_cfs" and "austin_c_af".

After these two fields have been added to df2 use boolean indexing to create a new dataframe from 2015 through 2020. Finally plot the discharge data (in acre-ft) for “austin_cr”.

bonus exercise try to plot both "russian_r_af" and "austin_c_af" on the same plot

[25]:
conv = 60 * 60 * 24
df2["austin_c_cfd"] = df2.austin_c * conv
df2["austin_c_af"] = df2.austin_c_cfd / 43559.9
df2

# now let's plot up discharge from 2018 - 2020
dfplt = df2[(df2["year"] >= 2015) & (df2["year"] <= 2020)]
ax = dfplt["austin_c_af"].plot()
ax.set_yscale("log")

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[25], line 2
      1 conv = 60 * 60 * 24
----> 2 df2["austin_c_cfd"] = df2.austin_c * conv
      3 df2["austin_c_af"] = df2.austin_c_cfd / 43559.9
      4 df2

NameError: name 'df2' is not defined
[26]:
# now let's plot up discharge from 2018 - 2020
dfplt = df2[(df2["year"] >= 2015) & (df2["year"] <= 2020)]
ax = dfplt[["russian_r_af","austin_c_af"]].plot()
ax.set_yscale("log")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[26], line 2
      1 # now let's plot up discharge from 2018 - 2020
----> 2 dfplt = df2[(df2["year"] >= 2015) & (df2["year"] <= 2020)]
      3 ax = dfplt[["russian_r_af","austin_c_af"]].plot()
      4 ax.set_yscale("log")

NameError: name 'df2' is not defined

groupby: grouping data and performing mathematical operations on it

groupby() is a powerful method that allows for performing statistical operations over a groups of “common” data within a dataframe.

For this example we’ll use it to get mean daily flows for the watershed. Pandas will group all common days of the year with each other and then calculate the mean value of these via the function .mean(). groupby() also supports other operations such as .median(), .sum(), max(), min(), std(), and other functions.

[27]:
df2["day_of_year"] = df2.index.day_of_year

df_mean_day = df2.groupby(by=["day_of_year"], as_index=False)[["russian_r_af", "austin_c_af"]].mean()
ax = df_mean_day[["russian_r_af", "austin_c_af"]].plot()
ax.set_yscale("log")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[27], line 1
----> 1 df2["day_of_year"] = df2.index.day_of_year
      3 df_mean_day = df2.groupby(by=["day_of_year"], as_index=False)[["russian_r_af", "austin_c_af"]].mean()
      4 ax = df_mean_day[["russian_r_af", "austin_c_af"]].plot()

NameError: name 'df2' is not defined

We can see that around March flow starts decreasing heavily and doesn’t recover until sometime in october. What’s going on here? Let’s load some climate data and see what’s happening.

[28]:
cimis_file = data_path / "santa_rosa_CIMIS_83.csv"
df_cimis = pd.read_csv(cimis_file)
drop_list = ["qc"] + [f"qc.{i}" for i in range(1, 22)]
df_cimis.drop(columns=drop_list, inplace=True)
df_cimis
[28]:
Stn Id Stn Name CIMIS Region Date Jul ETo (in) Precip (in) Sol Rad (Ly/day) Avg Vap Pres (mBars) Max Air Temp (F) ... Rose NNE Rose ENE Rose ESE Rose SSE Rose SSW Rose WSW Rose WNW Rose NNW Wind Run (miles) Avg Soil Temp (F)
0 83 Santa Rosa North Coast Valleys 1/1/1990 1 0.00 0.30 42.0 7.7 48.7 ... 0.03 0.02 0.06 0.06 0.04 0.10 0.15 0.14 32.1 46.3
1 83 Santa Rosa North Coast Valleys 1/2/1990 2 0.06 0.00 236.0 6.1 58.4 ... 0.06 0.01 0.04 0.03 0.03 0.06 0.45 1.53 121.0 44.9
2 83 Santa Rosa North Coast Valleys 1/3/1990 3 0.04 0.00 225.0 5.8 63.0 ... 0.08 0.04 0.10 0.04 0.06 0.05 0.21 0.23 44.5 43.3
3 83 Santa Rosa North Coast Valleys 1/4/1990 4 0.03 0.01 190.0 6.3 56.7 ... 0.07 0.07 0.11 0.07 0.03 0.03 0.08 0.09 30.2 42.8
4 83 Santa Rosa North Coast Valleys 1/5/1990 5 0.04 0.00 192.0 7.2 59.1 ... 0.08 0.13 0.33 0.08 0.04 0.08 0.07 0.05 45.2 43.7
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
11948 83 Santa Rosa North Coast Valleys 9/18/2022 261 0.03 0.77 113.0 16.4 66.8 ... 0.01 0.04 0.29 0.51 0.14 0.01 0.00 0.00 197.4 65.2
11949 83 Santa Rosa North Coast Valleys 9/19/2022 262 0.14 0.02 424.0 15.6 73.9 ... 0.09 0.07 0.08 0.17 0.09 0.28 0.15 0.07 108.9 65.9
11950 83 Santa Rosa North Coast Valleys 9/20/2022 263 0.10 0.00 330.0 13.9 72.6 ... 0.08 0.04 0.10 0.11 0.18 0.25 0.15 0.10 79.6 65.8
11951 83 Santa Rosa North Coast Valleys 9/21/2022 264 0.15 0.07 458.0 14.8 75.5 ... 0.09 0.05 0.13 0.16 0.18 0.22 0.08 0.09 103.3 66.7
11952 83 Santa Rosa North Coast Valleys 9/22/2022 265 0.17 0.00 494.0 13.1 82.9 ... 0.14 0.06 0.09 0.10 0.11 0.20 0.12 0.19 83.7 66.3

11953 rows × 27 columns

[29]:
df_mean_clim = df_cimis.groupby(by=["Jul"], as_index=False)[["ETo (in)", "Precip (in)"]].mean()
df_mean_clim = df_mean_clim.rename(columns={"Jul": "day_of_year"})
df_mean_clim.head()
[29]:
day_of_year ETo (in) Precip (in)
0 1 0.031212 0.335455
1 2 0.031212 0.155152
2 3 0.030303 0.195484
3 4 0.030909 0.190303
4 5 0.034242 0.150000

Joining two DataFrames with an inner join

Inner joins can be made in pandas with the merge() method. As inner join, joins two dataframes on a common key or values, when a key or value exists in one dataframe, but not the other that row of data will be excluded from the joined dataframe.

There are a number of other ways to join dataframes in pandas. Detailed examples and discussion of the different merging methods can be found here

[30]:
df_merged = pd.merge(df_mean_day, df_mean_clim, on=["day_of_year",])
df_merged.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[30], line 1
----> 1 df_merged = pd.merge(df_mean_day, df_mean_clim, on=["day_of_year",])
      2 df_merged.head()

NameError: name 'df_mean_day' is not defined
[31]:
cols = [i for i in list(df_merged) if i != "day_of_year"]
ax = df_merged[cols].plot()
ax.set_yscale("log")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[31], line 1
----> 1 cols = [i for i in list(df_merged) if i != "day_of_year"]
      2 ax = df_merged[cols].plot()
      3 ax.set_yscale("log")

NameError: name 'df_merged' is not defined

This starts to make a little more sense! We can see that this area gets most of it’s precipitation in the winter and early spring. The evapotranspiration curve shows what we’d expect: that there is more evapotranspiration in the summer than the winter.

Stepping back for a minute: exploring Merge and Concat

Merge and concat are very powerful and important methods for combining pandas DataFrames (and later geopandas GeoDataFrames). This section takes a moment, as an aside to explore some of the common funtions and options for performing merges and concatenation.

The merge method

Pandas merge method allows the user to join two dataframes based on column values. There are a few methods that can be used to control the type of merge and the result.

  • inner: operates as a intersection of the data and keeps rows from both dataframes if the row has a matching key in both dataframes.

  • outer: operates as a union and joins all rows from both dataframes, fills columns with nan where data is not available for a row.

  • left: keeps all rows from the ‘left’ dataframe and joins columns from the right

  • right: keeps all rows from the ‘right’ dataframe and joins columns from the left

[32]:
ex0 = {
    "name": [],
    "childhood_dream_job": []
}
ex1 = {
    "name": [],
    "age": []
}
[ ]:

[ ]:

[ ]:

The concat method

Pandas concat method allows the user to concatenate dataframes together

[33]:
gw = info[info.site_tp_cd == "GW"]
sw = info[info.site_tp_cd == "ST"]
sw = sw[list(sw)[0:8]]
sw.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[33], line 1
----> 1 gw = info[info.site_tp_cd == "GW"]
      2 sw = info[info.site_tp_cd == "ST"]
      3 sw = sw[list(sw)[0:8]]

NameError: name 'info' is not defined
[34]:
newdf = pd.concat((gw, sw), ignore_index=True)
newdf
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[34], line 1
----> 1 newdf = pd.concat((gw, sw), ignore_index=True)
      2 newdf

NameError: name 'gw' is not defined

Back to working with our climate and stream data

Is there anything else we can look at that might give us more insights into this basin?

Let’s try looking at long term, yearly trends to see what’s there.

[35]:
year = []
for dstr in df_cimis.Date.values:
    mo, d, yr = [int(i) for i in dstr.split("/")]
    if mo < 10:
        year.append(yr - 1)
    else:
        year.append(yr)
df_cimis["year"] = year
df_cimis.head()
[35]:
Stn Id Stn Name CIMIS Region Date Jul ETo (in) Precip (in) Sol Rad (Ly/day) Avg Vap Pres (mBars) Max Air Temp (F) ... Rose ENE Rose ESE Rose SSE Rose SSW Rose WSW Rose WNW Rose NNW Wind Run (miles) Avg Soil Temp (F) year
0 83 Santa Rosa North Coast Valleys 1/1/1990 1 0.00 0.30 42.0 7.7 48.7 ... 0.02 0.06 0.06 0.04 0.10 0.15 0.14 32.1 46.3 1989
1 83 Santa Rosa North Coast Valleys 1/2/1990 2 0.06 0.00 236.0 6.1 58.4 ... 0.01 0.04 0.03 0.03 0.06 0.45 1.53 121.0 44.9 1989
2 83 Santa Rosa North Coast Valleys 1/3/1990 3 0.04 0.00 225.0 5.8 63.0 ... 0.04 0.10 0.04 0.06 0.05 0.21 0.23 44.5 43.3 1989
3 83 Santa Rosa North Coast Valleys 1/4/1990 4 0.03 0.01 190.0 6.3 56.7 ... 0.07 0.11 0.07 0.03 0.03 0.08 0.09 30.2 42.8 1989
4 83 Santa Rosa North Coast Valleys 1/5/1990 5 0.04 0.00 192.0 7.2 59.1 ... 0.13 0.33 0.08 0.04 0.08 0.07 0.05 45.2 43.7 1989

5 rows × 28 columns

[36]:
df2.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[36], line 1
----> 1 df2.head()

NameError: name 'df2' is not defined

.aggregate()

The pandas .aggregate() can be used with .groupy() to perform multiple statistical operations.

Example usage could be:

agdf = df2.groupby(by=["day_of_year"], as_index=False)["austin_c_af"].aggregate([np.min, np.max, np.mean, np.std])

And would return a dataframe grouped by the day of year and take the min, max, mean, and standard deviation of these data.

Class exercise 3: groupy, aggregate, and merge

For this exercise we need to produce yearly mean and standard deviation flows for the russian_r_af variable and merge the data with yearly mean precipitation and evapotranspiration

Hints:

  • df2 and df_cimis are the dataframes these operations should be performed on

  • use .groupby() to group by the year and do precip and ETo in separate groupby routines

  • rename the columns in the ETo aggregated dataframe and the Precip dataframe to mean_et, std_et, mean_precip, std_precip

  • np.mean and np.std can be used to calculate mean and std flows

Name your final joined dataframe df_yearly

[37]:
dfg0 = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std'])
dfg1 = df_cimis.groupby(by=["year"], as_index=False)["ETo (in)"].aggregate(['mean', 'std'])
dfg2 = df_cimis.groupby(by=["year"], as_index=False)["Precip (in)"].aggregate(['mean', 'std'])

dfm1 = pd.merge(dfg0, dfg1, on=["year"], suffixes=(None, "_et"))
df_yearly = pd.merge(dfm1, dfg2, on=["year"], suffixes=(None, "_precip"))

df_yearly
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[37], line 1
----> 1 dfg0 = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std'])
      2 dfg1 = df_cimis.groupby(by=["year"], as_index=False)["ETo (in)"].aggregate(['mean', 'std'])
      3 dfg2 = df_cimis.groupby(by=["year"], as_index=False)["Precip (in)"].aggregate(['mean', 'std'])

NameError: name 'df2' is not defined

Lets examine the long term flow record for the Russian River

[38]:
df_y_flow = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std'])

fig = plt.figure(figsize=(12,4))

lower_ci = df_y_flow["mean"] - 2 * df_y_flow['std']
lower_ci = np.where(lower_ci < 0, 0, lower_ci)
upper_ci = df_y_flow["mean"] + 2 * df_y_flow['std']
ax = df_y_flow["mean"].plot(style="b.-")
ax.fill_between(df_y_flow.index, lower_ci, upper_ci, color="b", alpha=0.5);
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[38], line 1
----> 1 df_y_flow = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std'])
      3 fig = plt.figure(figsize=(12,4))
      5 lower_ci = df_y_flow["mean"] - 2 * df_y_flow['std']

NameError: name 'df2' is not defined

From this plot it looks like the long term trend in yearly discharge in the Russian River has been decreasing. We will revisit and test this later.

First let’s see if there are any relationships between yearly discharge and climate

[39]:
dfg0 = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std', 'sum'])
dfg1 = df_cimis.groupby(by=["year"], as_index=False)["ETo (in)"].aggregate(['mean', 'std', 'sum'])
dfg2 = df_cimis.groupby(by=["year"], as_index=False)["Precip (in)"].aggregate(['mean', 'std', 'sum'])
dfm1 = pd.merge(dfg0, dfg1, on=["year"], suffixes=(None, "_et"))
df_yearly = pd.merge(dfm1, dfg2, on=["year"], suffixes=(None, "_precip"))

fig = plt.figure(figsize=(12,4))

lower_ci = df_yearly["mean"] - 2 * df_yearly['std']
lower_ci = np.where(lower_ci < 0, 0, lower_ci)
upper_ci = df_yearly["mean"] + 2 * df_yearly['std']
ax = df_yearly["mean"].plot(style="b.-", label="flow_af")
ax.fill_between(df_yearly.index, lower_ci, upper_ci, color="b", alpha=0.5)
ax2 = ax.twinx()
ax2.plot(df_yearly.index, df_yearly.sum_precip, "k--", lw=1.5, label="Precip")
ax2.plot(df_yearly.index, df_yearly.sum_et, "r.--", lw=1.5, label="ET")
plt.legend()
plt.show();
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[39], line 1
----> 1 dfg0 = df2.groupby(by=["year"], as_index=False)["russian_r_af"].aggregate(['mean', 'std', 'sum'])
      2 dfg1 = df_cimis.groupby(by=["year"], as_index=False)["ETo (in)"].aggregate(['mean', 'std', 'sum'])
      3 dfg2 = df_cimis.groupby(by=["year"], as_index=False)["Precip (in)"].aggregate(['mean', 'std', 'sum'])

NameError: name 'df2' is not defined

As expected, precipitation amount is the main driver of the yearly discharge regime here

Baseflow separation

Baseflow separation is a method to separate the quick response hydrograph (storm runoff) from the long term flow. We’re going to go back to the complete daily dataset to perform this operation. The following cell contains a low pass filtration method that is used for digital baseflow separation. We’ll use these in our analysis

[40]:
def _baseflow_low_pass_filter(arr, beta, enforce):
    """
    Private method to apply digital baseflow separation filter
    (Lyne & Hollick, 1979; Nathan & Mcmahon, 1990;
    Boughton, 1993; Chapman & Maxwell, 1996).

    This method should not be called by the user!

    Method removes "spikes" which would be consistent with storm flow
    events from data.

    Parameters
    ----------
    arr : np.array
        streamflow or municipal pumping time series

    beta : float
        baseflow filtering parameter that ranges from 0 - 1
        values in 0.8 - 0.95 range used in literature for
        streamflow baseflow separation

    enforce : bool
        enforce physical constraint of baseflow less than measured flow

    Returns
    -------
        np.array of filtered data
    """
    # prepend 10 records to data for initial spin up
    # these records will be dropped before returning data to user
    qt = np.zeros((arr.size + 10,), dtype=float)
    qt[0:10] = arr[0:10]
    qt[10:] = arr[:]

    qdt = np.zeros((arr.size + 10,), dtype=float)
    qbf = np.zeros((arr.size + 10,), dtype=float)

    y = (1. + beta) / 2.

    for ix in range(qdt.size):
        if ix == 0:
            qbf[ix] = qt[ix]
            continue

        x = beta * qdt[ix - 1]
        z = qt[ix] - qt[ix - 1]
        qdt[ix] = x + (y * z)

        qb = qt[ix] - qdt[ix]
        if enforce:
            if qb > qt[ix]:
                qbf[ix] = qt[ix]
            else:
                qbf[ix] = qb

        else:
            qbf[ix] = qb

    return qbf[10:]


def baseflow_low_pass_filter(arr, beta=0.9, T=1, enforce=True):
    """
    User method to apply digital baseflow separation filter
    (Lyne & Hollick, 1979; Nathan & Mcmahon, 1990;
    Boughton, 1993; Chapman & Maxwell, 1996).

    Method removes "spikes" which would be consistent with storm flow
    events from data.

    Parameters
    ----------
    arr : np.array
        streamflow or municipal pumping time series

    beta : float
        baseflow filtering parameter that ranges from 0 - 1
        values in 0.8 - 0.95 range used in literature for
        streamflow baseflow separation

    T : int
        number of recursive filtering passes to apply to the data

    enforce : bool
        enforce physical constraint of baseflow less than measured flow

    Returns
    -------
        np.array of baseflow
    """
    for _ in range(T):
        arr = _baseflow_low_pass_filter(arr, beta, enforce)

    return arr

Class exercise 4: baseflow separation

Using the full dataframe discharge dataframe, df2, get the baseflows for the Russian River (in acre-ft) and add these to the dataframe as a new column named russian_bf_af.

The function baseflow_low_pass_filter() will be used to perform baseflow. This function takes a numpy array of stream discharge and runs a digital low pass filtration method to calculate baseflow.

After performing baseflow separation plot both the baseflow and the total discharge for the years 2015 - 2017.

Hints:

  • make sure to use the .values property when you get discharge data from the pandas dataframe

  • feel free to play with the input parameters beta and T.

    • beta is commonly between 0.8 - 0.95 for hydrologic problems.

    • T is the number of filter passes over the data, therefore increasing T will create a smoother profile. I recommend starting with a T value of around 5 and adjusting it to see how it changes the baseflow profile.

[41]:
baseflow = baseflow_low_pass_filter(df2["russian_r_af"].values, beta=0.90, T=5)
df2["russian_bf_af"] = baseflow

fig = plt.figure(figsize=(15, 10))
tdf = df2[(df2.year >= 2015) & (df2.year <= 2017)]
ax = tdf[["russian_r_af", "russian_bf_af"]].plot()
ax.set_yscale("log");
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[41], line 1
----> 1 baseflow = baseflow_low_pass_filter(df2["russian_r_af"].values, beta=0.90, T=5)
      2 df2["russian_bf_af"] = baseflow
      4 fig = plt.figure(figsize=(15, 10))

NameError: name 'df2' is not defined

Back to the basics:

Now that we’ve done some analysis on real data, let’s go back to the basic and briefly discuss how to adjust data values in pandas

Adjusting a whole column of data values

Because pandas series objects (columns) are built off of numpy, we can perform mathematical operations in place on a whole column similarly to numpy arrays

[45]:
df3 = df2.copy()
# Adding values
df3["russian_r"] += 10000

# Subtracting values
df3["russian_r"] -= 10000

# multiplication
df3["russian_r"] *= 5

# division
df3["russian_r"] /= 5

# more complex operations
df3["russian_r"] = np.log10(df3["russian_r"].values)
df3.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[45], line 1
----> 1 df3 = df2.copy()
      2 # Adding values
      3 df3["russian_r"] += 10000

NameError: name 'df2' is not defined

updating values by position

We can update single or multiple values by their position in the dataframe using .iloc

[46]:
df3.iloc[0, 1] = 999
df3.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[46], line 1
----> 1 df3.iloc[0, 1] = 999
      2 df3.head()

NameError: name 'df3' is not defined

updating values based on location

We can update values in the dataframe based on their index and column headers too using .loc

[47]:
df3.loc[df3.index[0], 'russian_r'] *= 100
df3.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[47], line 1
----> 1 df3.loc[df3.index[0], 'russian_r'] *= 100
      2 df3.head()

NameError: name 'df3' is not defined

Class exercise 5: setting data

The russian river discharge in cubic feet per day highly variable and represented by large numbers. To make this data easier to read and plot, update it to a log10 representation.

Then use either a location based method to change the value in austin_c on 10-4-1939 to 0.

Finally display the first 5 records in the notebook.

[48]:
df3["russian_r_cfd"] = np.log10(df3["russian_r_cfd"])
df3.loc[df3.index[3], "austin_c"] = 0
df3.head()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[48], line 1
----> 1 df3["russian_r_cfd"] = np.log10(df3["russian_r_cfd"])
      2 df3.loc[df3.index[3], "austin_c"] = 0
      3 df3.head()

NameError: name 'df3' is not defined

Now for some powerful analysis using fourier analysis to extract the data’s signal.

Some background for your evening viewing: https://youtu.be/spUNpyF58BY

We have to detrend the data for fast fourier transforms to work properly. Here’s a discussion on why:

https://groups.google.com/forum/#!topic/comp.dsp/kYDZqetr_TU

Fortunately we can easily do this in python using scipy!

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html

Let’s create a new dataframe with only the data we’re interested in analysing.

[49]:
df_data = df2[["russian_r_af", "year"]]
df_data = df_data.rename(columns={"russian_r_af": "Q"})
df_data.describe()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[49], line 1
----> 1 df_data = df2[["russian_r_af", "year"]]
      2 df_data = df_data.rename(columns={"russian_r_af": "Q"})
      3 df_data.describe()

NameError: name 'df2' is not defined

But first let’s also set the water year by date on this dataframe and drop the single nan value from the dataframe

[50]:
df_data['water_year'] = df_data.index.shift(30+31+31,freq='d').year
df_data.dropna(inplace=True)
df_data["detrended"] = detrend(df_data.Q.values)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[50], line 1
----> 1 df_data['water_year'] = df_data.index.shift(30+31+31,freq='d').year
      2 df_data.dropna(inplace=True)
      3 df_data["detrended"] = detrend(df_data.Q.values)

NameError: name 'df_data' is not defined
[51]:
fig = plt.figure(figsize=(12,6))
ax = plt.subplot(3,1,1)
plt.plot(df_data.detrended)
plt.title('detrended signal')

plt.subplot(3,1,2)
plt.plot(df_data.index, df_data.Q)
plt.title('Raw Signal')

plt.subplot(3,1,3)
plt.plot(df_data.index, df_data.Q - df_data.detrended)
plt.title('Difference')

plt.tight_layout()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[51], line 3
      1 fig = plt.figure(figsize=(12,6))
      2 ax = plt.subplot(3,1,1)
----> 3 plt.plot(df_data.detrended)
      4 plt.title('detrended signal')
      6 plt.subplot(3,1,2)

NameError: name 'df_data' is not defined
../../../_images/notebooks_part0_python_intro_solutions_08_pandas_104_1.png

Evaluate and plot the Period Spectrum to see timing of recurrence

Here we’ve created a function that performs fast fourier transforms and then plot’s the spectrum for signals of various lengths.

[52]:
def fft_and_plot(df, plot_dominant_periods=4):
    N = len(df)
    yf = np.fft.fft(df.detrended)
    yf = np.abs(yf[:int(N / 2)])

    # get the right frequency
    # https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq
    d = 1. # day
    f = np.fft.fftfreq(N, d)[:int(N/2)]
    f[0] = .00001
    per = 1./f # days

    fig = plt.figure(figsize=(12,6))
    ax = plt.subplot(2,1,1)
    plt.plot(per, yf)
    plt.xscale('log')

    top=np.argsort(yf)[-plot_dominant_periods:]
    j=(10-plot_dominant_periods)/10
    for i in top:
        plt.plot([per[i], per[i]], [0,np.max(yf)], 'r:')
        plt.text(per[i], j*np.max(yf), f"{per[i] :.2f}")
        j+=0.1

    plt.title('Period Spectrum')
    plt.grid()
    ax.set_xlabel('Period (days)')
    plt.xlim([1, 1e4])

    plt.subplot(2,1,2)
    plt.plot(df.index,df.Q)
    plt.title('Raw Signal')
    plt.tight_layout()

Now let’s look at the whole signal

[53]:
fft_and_plot(df_data)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[53], line 1
----> 1 fft_and_plot(df_data)

NameError: name 'df_data' is not defined

We see a strong annual frequency that corresponds to spring snowmelt from the surrounding mountain ranges. The second strongest frequency is biannually, and is likely due to the onset of fall in winter rains

Okay, what about years before dams were installed on the Russian River.

Let’s get in the wayback machine and look at only the years prior to 1954!

[54]:
fft_and_plot(df_data[df_data.index.year < 1954])
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[54], line 1
----> 1 fft_and_plot(df_data[df_data.index.year < 1954])

NameError: name 'df_data' is not defined

The binanual and annual signals have a much wider spread, which suggests that peak runoff was a little more variable in it’s timing compared to the entire data record.

What if we focus in on after 1954?

[55]:
fft_and_plot(df_data[(df_data.index.year > 1954)])
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[55], line 1
----> 1 fft_and_plot(df_data[(df_data.index.year > 1954)])

NameError: name 'df_data' is not defined

It looks like flows are more controlled with a tighter periods.

So post dam construction, flows are much more controlled with regular release schedules.